Fibrosis pp 245-251 | Cite as

Mechanical Deformation of Cultured Cells with Hydrogels

  • Christal A. Worthen
  • Laure Rittié
  • Gary J. Fisher
Part of the Methods in Molecular Biology book series (MIMB, volume 1627)


Polyacrylamide hydrogels can be used to culture cells in a range of stiffness that can closer mimic physiological environments. Changes in environmental stiffness have been documented in conditions such as fibrosis, cancer, and aging. In this chapter, we describe a method in which we pour gels directly into multiwell plates using a plastic support that covalently binds to the polymerizing hydrogel. The hydrogel is then crosslinked to calfskin collagen using a crosslinker. The result is a thick hydrogel, scalable to any size plate, which covers the entire surface of the well with no edge effects. The gels can be routinely assembled and are easily reproducible. These scaffolds are used as in vitro models to study fibroblast reaction to variation in environmental stiffness.

Key words

Hydrogels Fibroblasts Polyacrylamide Stiffness Multiwell Cell culture 



C.A.W. is supported by NIH award T32AR007197.


  1. 1.
    Varani J, Schuger L, Dame MK et al (2004) Reduced fibroblast interaction with intact collagen as a mechanism for depressed collagen synthesis in photodamaged skin. J Invest Dermatol 122(6):1471–1479. doi: 10.1111/j.0022-202X.2004.22614.x CrossRefPubMedGoogle Scholar
  2. 2.
    Fisher GJ, Varani J, Voorhees JJ (2008) Looking older: fibroblast collapse and therapeutic implications. Arch Dermatol 144(5):666–672. doi: 10.1001/archderm.144.5.666 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Quan T, Little E, Quan H et al (2013) Elevated matrix metalloproteinases and collagen fragmentation in photodamaged human skin: impact of altered extracellular matrix microenvironment on dermal fibroblast function. J Invest Dermatol 133(5):1362–1366. doi: 10.1038/jid.2012.509 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Smithmyer ME, Sawicki LA, Kloxin AM (2014) Hydrogel scaffolds as in vitro models to study fibroblast activation in wound healing and disease. Biomater Sci 2(5):634–650. doi: 10.1039/C3BM60319A
  5. 5.
    Li Y, Lei D, Swindell WR et al (2015) Age-associated increase in skin fibroblast-derived prostaglandin E2 contributes to reduced collagen levels in elderly human skin. J Invest Dermatol 135(9):2181–2188. doi: 10.1038/jid.2015.157 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Xia W, Quan T, Hammerberg C et al (2015) A mouse model of skin aging: fragmentation of dermal collagen fibrils and reduced fibroblast spreading due to expression of human matrix metalloproteinase-1. J Dermatol Sci 78(1):79–82. doi: 10.1016/j.jdermsci.2015.01.009 CrossRefPubMedGoogle Scholar
  7. 7.
    Fisher GJ, Shao Y, He T et al (2016) Reduction of fibroblast size/mechanical force down-regulates TGF-beta type II receptor: implications for human skin aging. Aging Cell 15(1):67–76. doi: 10.1111/acel.12410 CrossRefPubMedGoogle Scholar
  8. 8.
    Purohit T, He T, Qin Z et al (2016) Smad3-dependent regulation of type I collagen in human dermal fibroblasts: impact on human skin connective tissue aging. J Dermatol Sci 83(1):80–83. doi: 10.1016/j.jdermsci.2016.04.004 CrossRefPubMedGoogle Scholar
  9. 9.
    Sunyer R, Jin AJ, Nossal R et al (2012) Fabrication of hydrogels with steep stiffness gradients for studying cell mechanical response. PLoS One 7(10):e46107. doi: 10.1371/journal.pone.0046107 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Syed S, Karadaghy A, Zustiak S (2015) Simple polyacrylamide-based multiwell stiffness assay for the study of stiffness-dependent cell responses. J Vis Exp 97. doi: 10.3791/52643
  11. 11.
    Rittié L, Fisher GJ (2005) Isolation and culture of skin fibroblasts. Methods Mol Med 117:83–98. doi: 10.1385/1-59259-940-0:083 PubMedGoogle Scholar
  12. 12.
    Thermo-Fisher TR001 Photoactivate-aryl-azides. Accessed 12 Dec 2016
  13. 13.
    Saha K, Kim J, Irwin E et al (2010) Surface creasing instability of soft polyacrylamide cell culture substrates. Biophys J 99(12):L94–L96. doi: 10.1016/j.bpj.2010.09.045 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Trappmann B, Gautrot JE, Connelly JT et al (2012) Extracellular-matrix tethering regulates stem-cell fate. Nat Mater 11(7):642–649. doi: 10.1038/nmat3339 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Christal A. Worthen
    • 2
  • Laure Rittié
    • 1
    • 2
  • Gary J. Fisher
    • 2
  1. 1.Dermatology Therapeutic AreaGlaxoSmithKlineCollegevilleUSA
  2. 2.Department of DermatologyUniversity of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations