Skip to main content
Book cover

Zymography pp 189–198Cite as

Zymography Methods to Simultaneously Analyze Superoxide Dismutase and Catalase Activities: Novel Application for Yeast Species Identification

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1626))

Abstract

We provide an optimized protocol for a double staining technique to analyze superoxide dismutase enzymatic isoforms Cu-Zn SOD (Sod1) and Mn-SOD (Sod2) and catalase in the same polyacrylamide gel. The use of NaCN, which specifically inhibits yeast Sod1 isoform, allows the analysis of Sod2 isoform while the use of H2O2 allows the analysis of catalase. The identification of a different zymography profiling of SOD and catalase isoforms in different yeast species allowed us to propose this technique as a novel yeast identification and classification strategy.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Budic M, Kidric M, Meglic V, Cigic B (2009) A quantitative technique for determining proteases and their substrate specificities and pH optima in crude enzyme extracts. Anal Biochem 388:56–62

    Article  CAS  PubMed  Google Scholar 

  2. Wilkesman J, Kurz L (2009) Protease analysis by zymography: a review on techniques and patents. Recent Pat Biotechnol 3:175–184

    Article  CAS  PubMed  Google Scholar 

  3. Gross J, Lapière CM (1962) Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc Natl Acad Sci U S A 48:1014–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vandooren J, Geurts N, Martens E, Van den Steen PE, Opdenakker G (2013) Zymography methods for visualizing hydrolytic enzymes. Nat Methods 10:175–184

    Article  Google Scholar 

  5. Michaud D (1998) Gel electrophoresis of proteolytic enzymes. Anal Chim Acta 372:173–185

    Article  CAS  Google Scholar 

  6. Marokházi J, Lengyel K, Pekár S, Felföldi G, Patthy A, Gráf L, Fodor A, Venekei I (2004) Comparison of proteolytic activities produced by entopathogenic Photorhabdus bacteria: strain- and phase-dependent heterogeneity in composition and activity of four enzymes. Appl Environ Microbiol 70:7311–7320

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shukla MR, Yadav R, Desai A (2009) Catalase and superoxide dismutase double staining zymogram technique for Deinococcus and Kocuria species exposed to multiple stresses. J Basic Microbiol 49:593–597

    Article  CAS  PubMed  Google Scholar 

  8. Niyomploy P, Srisomsap C, Chokchaichamnankit D, Vinayavekhin N, Karnchanatat A, Sangvanich P (2014) Superoxide dismutase isozyme detection using two-dimensional gel electrophoresis zymograms. J Pharm Biomed Anal 90:72–77

    Article  CAS  PubMed  Google Scholar 

  9. Fridovich I (1978) Superoxide dismutase: defence against endogenous superoxide radical. Ciba Found Symp 65:77–93

    Google Scholar 

  10. Sturtz LA, Diekert K, Jensen LT, Lill R, Culotta VC (2001) A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria: a physiological role for Sod1 in guarding against mitochondrial oxidative damage. J Biol Chem 276:38084–38089

    CAS  PubMed  Google Scholar 

  11. Tsang CK, Liu Y, Thomas J, Zhang Y, Zheng FZ (2014) Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance. Nat Commun 5:3446

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gleason JE, Galaleldeen A, Peterson RL, Taylor AB, Holloway SP, Waninger-Saroni J, Cormarck BP, Cabelli DE, Hart PJ, Culotta VC (2014) Candida albicans SOD5 represents the prototype of an unprecedented class of Cu-only superoxide dismutase required for pathogen defense. Proc Natl Acad Sci U S A 111:5866–5871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Herrero E, Ros J, Bellí G, Cabiscol E (2007) Redox control and oxidative stress in yeast cells. Biochim Biophys Acta 1780:1217–1235

    Article  PubMed  Google Scholar 

  14. Luk EE, Culotta VC (2001) Manganese superoxide dismutase in Saccharomyces cerevisiae acquires its metal co-factor through a pathway involving the Nramp metal transporter, Smf2p. J Biol Chem 276:47556–47562

    Article  CAS  PubMed  Google Scholar 

  15. Gregory EM, Goscin SA, Fridovich I (1974) Superoxide dismutase and oxygen toxicity in a eukaryote. J Bacteriol 2:456–460

    Google Scholar 

  16. Wayne LG, Diaz GA (1986) A double staining method for differentiating between two classes of mycobacterial catalase in polyacrylamide electrophoresis gels. Anal Biochem 157:89–92

    Article  CAS  PubMed  Google Scholar 

  17. Martins D, English AM (2014) Catalase activity is stimulated by H2O2 in rich culture medium and is required for H2O2 resistance and adaptation in yeast. Redox Biol 2:308–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gamero-Sandemetrio E, Gómez-Pastor R, Matallana E (2013) Zymogram profiling of superoxide dismutase and catalase activities allows Saccharomyces and non-Saccharomyces species differentiation and correlates to their fermentation performance. Appl Microbiol Biotechnol 97:4563–4576

    Article  CAS  PubMed  Google Scholar 

  19. Carroll MC, Girourard JB, Ulloa JL, Subramaniam JR, Wong PC, Valentine JS, Culotta VC (2004) Mechanisms for activating Cu- and Zn-containing superoxide dismutase in the absence of the CCS Cu chaperone. Proc Natl Acad Sci U S A 101:5964–5969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yun EJ, Lee YN (2000) Production of two different catalase-peroxidases by Deinoccocus radiophilus. FEMS Microbiol Lett 184:155–159

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by grants AGL2011-24353 and AGL2014-52985-R from the Spanish Ministry of Economy and Competitiveness (MINECO) to E.M., and it has been performed within the Program VLC/Campus, Microcluster IViSoCa (Innovation for a Sustainable Viticulture and Quality), and Microcluster BBLM (Model Yeasts in Biomedicine & Biotechnology). E.G.-S. was a predoctoral fellow of the JAE program from the CSIC (Spanish National Research Council). R.G.-P. was a postdoctoral researcher at Universitat de València.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilia Matallana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Gamero-Sandemetrio, E., Gómez-Pastor, R., Matallana, E. (2017). Zymography Methods to Simultaneously Analyze Superoxide Dismutase and Catalase Activities: Novel Application for Yeast Species Identification. In: Wilkesman, J., Kurz, L. (eds) Zymography. Methods in Molecular Biology, vol 1626. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7111-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7111-4_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7109-1

  • Online ISBN: 978-1-4939-7111-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics