Skip to main content

Immunization with Antigen-Pulsed Dendritic Cells Against Highly Virulent Cryptococcus gattii Infection: Analysis of Cytokine-Producing T Cells

  • Protocol
  • First Online:
Vaccines for Invasive Fungal Infections

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1625))

Abstract

Cryptococcosis caused by highly virulent Cryptococcus gattii (Hv-Cg) is an emerging infectious disease that affects immunocompetent individuals. The Hv-Cg outbreak began in 1999, but the mechanisms responsible for its hyper-virulence as well as protective immunity against Hv-Cg infection remain to be elucidated. To better understand the protective immunity against Hv-Cg infection, we developed a novel immunization method using antigen-pulsed dendritic cells (DCs). We constructed a capsule-deficient Cg strain (∆cap60) and used it as a vaccine antigen. Mouse bone marrow-derived DCs were pulsed with ∆cap60 and transferred into mice twice before pulmonary infection with Hv-Cg strain R265. This DC-based immunization strongly induced cell-mediated immunity, including Th1 cells, Th17 cells, and multinucleated giant cells enclosing fungal cells in lungs. This vaccination significantly ameliorated the fungal burden and the survival rate after pulmonary infection with R265. The efficacy of DC-based immunization was significantly but partially reduced in IFNγ-deficient mice, thereby suggesting that the Th1 and Th17 responses play roles in vaccine-induced protection against Hv-Cg infection. This approach might provide new insights into overcoming Hv-Cg infections in immunocompetent subjects. In this chapter, we describe the procedures for DC-vaccine preparation and the analysis of cytokine-producing CD4+ T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Galanis E, MacDougall L, Kidd S et al (2010) Epidemiology of Cryptococcus gattii, British Columbia, Canada, 1999–2007. Emerg Infect Dis 16:251–257

    Article  PubMed  PubMed Central  Google Scholar 

  2. Smith RM, Mba-Jonas A, Tourdjman M et al (2014) Treatment and outcomes among patients with Cryptococcus gattii infections in the United States Pacific Northwest. PLoS One 9:e88875

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lizarazo J, Escandón P, Agudelo CI et al (2014) Retrospective study of the epidemiology and clinical manifestations of Cryptococcus gattii infections in Colombia from 1997–2011. PLoS Negl Trop Dis 8:e3272

    Article  PubMed  PubMed Central  Google Scholar 

  4. BCCDC (2011) Environmental pathogens, Cryptococcus gattii. British Columbia annual summary of reportable diseases 2011. pp 112–113

    Google Scholar 

  5. CDC (2010) Emergence of Cryptococcus gattii, Pacific Northwest, 2004–2010. Morb Mortal Wkly Rep 59:865–868

    Google Scholar 

  6. Okubo Y, Wakayama M, Ohno H et al (2013) Histopathological study of murine pulmonary cryptococcosis induced by Cryptococcus gattii and Cryptococcus neoformans. Jpn J Infect Dis 66:216–221

    Article  PubMed  Google Scholar 

  7. Ngamskulrungroj P, Chang Y, Sionov E, Kwon-Chung KJ (2012) The primary target organ of Cryptococcus gattii is different from that of Cryptococcus neoformans in a murine model. MBio 3:e00103–e00112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cheng P-Y, Sham A, Kronstad JW (2009) Cryptococcus gattii isolates from the British Columbia cryptococcosis outbreak induce less protective inflammation in a murine model of infection than Cryptococcus neoformans. Infect Immun 77:4284–4294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brouwer AE, Siddiqui AA, Kester MI et al (2007) Immune dysfunction in HIV-seronegative, Cryptococcus gattii meningitis. J Infect 54:e165–e168

    Article  PubMed  Google Scholar 

  10. Einsiedel L, Gordon DL, Dyer JR (2004) Paradoxical inflammatory reaction during treatment of Cryptococcus neoformans var. gattii meningitis in an HIV-seronegative woman. Clin Infect Dis 39:e78–e82

    Article  PubMed  Google Scholar 

  11. Urai M, Kaneko Y, Ueno K et al (2015) Evasion of innate immune responses by the highly virulent Cryptococcus gattii by altering capsule glucuronoxylomannan structure. Front Cell Infect Microbiol 5:101

    PubMed  Google Scholar 

  12. Leongson K, Cousineau-Côté V, Goupil M et al (2013) Altered immune response differentially enhances susceptibility to Cryptococcus neoformans and Cryptococcus gattii infection in mice expressing the HIV-1 transgene. Infect Immun 81:1100–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gibson JF, Johnston SA (2014) Immunity to Cryptococcus neoformans and C. gattii during cryptococcosis. Fungal Genet Biol 78:76–86

    Article  PubMed  Google Scholar 

  14. Saijo T, Chen J, Chen SC-A et al (2014) Anti-granulocyte-macrophage colony-stimulating factor autoantibodies are a risk factor for central nervous system infection by Cryptococcus gattii in otherwise immunocompetent patients. MBio 5:e00912–e00914

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mershon KL, Vasuthasawat A, Lawson GW et al (2009) Role of complement in protection against Cryptococcus gattii infection. Infect Immun 77:1061–1070

    Article  CAS  PubMed  Google Scholar 

  16. Hole CR, Wormley FL (2012) Vaccine and immunotherapeutic approaches for the prevention of cryptococcosis: lessons learned from animal models. Front Microbiol 3:291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chaturvedi AK, Hameed RS, Wozniak KL et al (2014) Vaccine-mediated immune responses to experimental pulmonary Cryptococcus gattii infection in mice. PLoS One 9:e104316

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ueno K, Kinjo Y, Okubo Y et al (2015) Dendritic cell-based immunization ameliorates pulmonary infection with highly virulent Cryptococcus gattii. Infect Immun 83:1577–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Murdock BJ, Huffnagle GB, Olszewski MA, Osterholzer JJ (2014) Interleukin-17A enhances host defense against cryptococcal lung infection through effects mediated by leukocyte recruitment, activation, and gamma interferon production. Infect Immun 82:937–948

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hill JO (1992) CD4+ T cells cause multinucleated giant cells to form around Cryptococcus neoformans and confine the yeast within the primary site of infection in the respiratory tract. J Exp Med 175:1685–1695

    Article  CAS  PubMed  Google Scholar 

  21. Okubo Y, Tochigi N, Wakayama M et al (2013) How histopathology can contribute to an understanding of defense mechanisms against cryptococci. Mediat Inflamm 2013:465319–465311

    Article  Google Scholar 

  22. Decken K, Köhler G, Palmer-Lehmann K et al (1998) Interleukin-12 is essential for a protective Th1 response in mice infected with Cryptococcus neoformans. Infect Immun 66:4994–5000

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kawakami K, Qureshi MH, Zhang T et al (1999) Interferon-gamma (IFN-gamma)-dependent protection and synthesis of chemoattractants for mononuclear leucocytes caused by IL-12 in the lungs of mice infected with Cryptococcus neoformans. Clin Exp Immunol 117:113–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ueno K, Urai M, Ohkouchi K et al (2016) Dendritic cell-based vaccine against fungal infection. Methods Mol Biol 1403:537–549

    Article  PubMed  Google Scholar 

  25. Anderson KG, Mayer-Barber K, Sung H et al (2014) Intravascular staining for discrimination of vascular and tissue leukocytes. Nat Protoc 9:209–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao J, Zhao J, Mangalam AK et al (2016) Airway memory CD4(+) T cells mediate protective immunity against emerging respiratory coronaviruses. Immunity 44:1379–1391

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This chapter describes research supported by KAKENHI (15K21644, 16H05349, and 15K15383) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, by the Research program on Emerging and Re-emerging Infectious Diseases from the Japan Agency for Medical Research and Development, AMED, and by LEGEND Research Grant Program 2015 from Tomy Digital Biology Co. Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Kinjo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ueno, K., Urai, M., Takatsuka, S., Abe, M., Miyazaki, Y., Kinjo, Y. (2017). Immunization with Antigen-Pulsed Dendritic Cells Against Highly Virulent Cryptococcus gattii Infection: Analysis of Cytokine-Producing T Cells. In: Kalkum, M., Semis, M. (eds) Vaccines for Invasive Fungal Infections. Methods in Molecular Biology, vol 1625. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7104-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7104-6_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7103-9

  • Online ISBN: 978-1-4939-7104-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics