Skip to main content

Generation and Analysis of Chromosomal Contact Maps of Bacteria

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1624))

Abstract

This methods article described a protocol aiming at generating chromosome contact maps of bacterial species using a genome-wide derivative of the chromosome conformation capture (3C) technique. The approach is readily applicable on a broad variety of gram + and gram-bacterial species. It describes and addresses known caveats and technicalities associated with the technique, and should be of interest to any laboratory interested to perform a multiscale analysis of the genome structure of its species of interest.

This is a preview of subscription content, log in via an institution.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Umbarger MA, Toro E, Wright MA, Porreca GJ, Baù D, Hong S-H et al (2011) The three-dimensional architecture of a bacterial genome and its alteration by genetic perturbation. Mol Cell 44(2):252–264

    Article  CAS  PubMed  Google Scholar 

  2. Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295(5558):1306–1311

    Article  CAS  PubMed  Google Scholar 

  3. Le TBK, Imakaev MV, Mirny LA, Laub MT (2013) High-resolution mapping of the spatial organization of a bacterial chromosome. Science 342(6159):731–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Marbouty M, Cournac A, Flot J-F, Marie-Nelly H, Mozziconacci J, Koszul R (2014) Metagenomic chromosome conformation capture (meta3C) unveils the diversity of chromosome organization in microorganisms. eLife 3:e03318

    Article  PubMed  PubMed Central  Google Scholar 

  5. Marbouty M, Le Gall A, Cattoni DI, Cournac A, Koh A, Fiche J-B et al (2015) Condensin- and replication-mediated bacterial chromosome folding and origin condensation revealed by hi-C and super-resolution imaging. Mol Cell 59(4):588–602

    Article  CAS  PubMed  Google Scholar 

  6. Val M-E, Marbouty M, de Lemos MF, Kennedy SP, Kemble H, Bland MJ et al (2016) A checkpoint control orchestrates the replication of the two chromosomes of Vibrio cholerae. Sci Adv 2:e150194. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4846446/

    Article  Google Scholar 

  7. Wang X, Le TBK, Lajoie BR, Dekker J, Laub MT, Rudner DZ (2015) Condensin promotes the juxtaposition of DNA flanking its loading site in Bacillus Subtilis. Genes Dev 29(15):1661–1675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Le TB, Laub MT (2016) Transcription rate and transcript length drive formation of chromosomal interaction domain boundaries. EMBO J 35(14):1582–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gavrilov AA, Gushchanskaya ES, Strelkova O, Zhironkina O, Kireev II, Iarovaia OV et al (2013) Disclosure of a structural milieu for the proximity ligation reveals the elusive nature of an active chromatin hub. Nucleic Acids Res 41(6):3563–3575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cournac A, Marie-Nelly H, Marbouty M, Koszul R, Mozziconacci J (2012) Normalization of a chromosomal contact map. BMC Genomics 13:436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Imakaev M, Fudenberg G, McCord RP, Naumova N, Goloborodko A, Lajoie BR et al (2012) Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat Methods 9(10):999–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yaffe E, Tanay A (2011) Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat Genet 43(11):1059–1065

    Article  CAS  PubMed  Google Scholar 

  14. Cournac A, Marbouty M, Mozziconacci J, Koszul R (2016) Generation and analysis of chromosomal contact maps of yeast species. Methods Mol Biol 1361:227–245

    Article  CAS  PubMed  Google Scholar 

  15. Lajoie BR, Dekker J, Kaplan N (2015) The Hitchhiker’s guide to hi-C analysis: practical guidelines. Methods 72:65–75

    Article  CAS  PubMed  Google Scholar 

  16. Wingett S, Ewels P, Furlan-Magaril M, Nagano T, Schoenfelder S, Fraser P et al (2015) HiCUP: pipeline for mapping and processing Hi-C data. F1000Res 4:1310. Available from: http://f1000research.com/articles/4-1310/v1

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by funding to R.K. from the European Research Council under the seventh Framework Program (FP7/2007-2013, ERC grant agreement 260822) and from Agence Nationale pour la Recherche (HiResBaCS ANR-15-CE11-0023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martial Marbouty or Romain Koszul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Marbouty, M., Koszul, R. (2017). Generation and Analysis of Chromosomal Contact Maps of Bacteria. In: Espéli, O. (eds) The Bacterial Nucleoid. Methods in Molecular Biology, vol 1624. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7098-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7098-8_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7097-1

  • Online ISBN: 978-1-4939-7098-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics