Skip to main content

Imaging the Cell Cycle of Pathogen E. coli During Growth in Macrophage

  • Protocol
  • First Online:
The Bacterial Nucleoid

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1624))

Abstract

The study of the bacterial cell cycle at the single cell level can not only give insights on the fitness of the bacterial population but also reveal heterogeneous behavior. Typically, the DNA replication, the cell division, and the nucleoid conformation are appropriate representatives of the bacterial cell cycle. Because bacteria rapidly adapt their growth rate to environmental changes, the measure of cell cycle parameters gives valuable insights for the study of bacterial stress response or host–pathogen interactions. Here we describe methods to first introduce fluorescent fusion proteins and fluorescent tag within the chromosome of pathogenic bacteria to study these cell cycle steps; then to follow them within macrophages using a confocal spinning disk microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Eaves-Pyles T et al (2008) Escherichia coli isolated from a Crohn’s disease patient adheres, invades, and induces inflammatory responses in polarized intestinal epithelial cells. Int J Med Microbiol 298:397–409

    Article  CAS  PubMed  Google Scholar 

  2. Gordon GS et al (1997) Chromosome and low copy plasmid segregation in E. coli: visual evidence for distinct mechanisms. Cell 90:1113–1121

    Article  CAS  PubMed  Google Scholar 

  3. Lau IF et al (2003) Spatial and temporal organization of replicating Escherichia coli chromosomes. Mol Microbiol 49:731–743

    Article  CAS  PubMed  Google Scholar 

  4. Li Y, Youngren B, Sergueev K, Austin S (2003) Segregation of the Escherichia coli chromosome terminus. Mol Microbiol 50:825–834

    Article  CAS  PubMed  Google Scholar 

  5. Espeli O, Mercier R, Boccard F (2008) DNA dynamics vary according to macrodomain topography in the E. coli chromosome. Mol Microbiol 68:1418–1427

    Article  CAS  PubMed  Google Scholar 

  6. Youngren B, Nielsen HJ, Jun S, Austin S (2014) The multifork Escherichia coli chromosome is a self-duplicating and self-segregating thermodynamic ring polymer. Genes Dev 28:71–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nielsen HJ, Youngren B, Hansen FG, Austin S (2007) Dynamics of Escherichia coli chromosome segregation during multifork replication. J Bacteriol 189:8660–8666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fisher JK et al (2013) Four-dimensional imaging of E. coli nucleoid organization and dynamics in living cells. Cell 153:882–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hadizadeh Yazdi N, Guet CC, Johnson RC, Marko JF (2012) Variation of the folding and dynamics of the Escherichia coli chromosome with growth conditions. Mol Microbiol 86:1318–1333

    Article  CAS  PubMed  Google Scholar 

  10. Shechter N et al (2013) Stress-induced condensation of bacterial genomes results in re-pairing of sister chromosomes: implications for double strand DNA break repair. J Biol Chem 288:25659–25667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ushijima Y, Yoshida O, Villanueva MJA, Ohniwa RL, Morikawa K (2016) Nucleoid clumping is dispensable for the Dps-dependent hydrogen peroxide resistance in Staphylococcus aureus. Microbiology 162(10):1822–1828. doi:10.1099/mic.0.000353

    Article  CAS  PubMed  Google Scholar 

  12. Ma X, Ehrhardt DW, Margolin W (1996) Colocalization of cell division proteins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by using green fluorescent protein. Proc Natl Acad Sci U S A 93:12998–13003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun Q, Margolin W (1998) FtsZ dynamics during the division cycle of live Escherichia coli cells. J Bacteriol 180:2050–2056

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bernhardt TG, de Boer PAJ (2005) SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over Chromosomes in E. coli. Mol Cell 18:555–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mukherjee A, Cao C, Lutkenhaus J (1998) Inhibition of FtsZ polymerization by SulA, an inhibitor of septation in Escherichia coli. Proc Natl Acad Sci U S A 95:2885–2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Paintdakhi A et al (2016) Oufti: an integrated software package for high-accuracy, high-throughput quantitative microscopy analysis. Mol Microbiol 99:767–777

    Article  CAS  PubMed  Google Scholar 

  17. Schindelin J et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  18. Glasser AL et al (2001) Adherent invasive Escherichia coli strains from patients with Crohn’s disease survive and replicate within macrophages without inducing host cell death. Infect Immun 69:5529–5537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Marceau AH et al (2011) Structure of the SSB-DNA polymerase III interface and its role in DNA replication. EMBO J 30:4236–4247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chaveroche MK, Ghigo JM, d’Enfert C (2000) A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans. Nucleic Acids Res 28:E97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. David A et al (2014) The two Cis-acting sites, parS1 and oriC1, contribute to the longitudinal organisation of Vibrio cholerae chromosome I. PLoS Genet 10:e1004448

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nielsen HJ, Ottesen JR, Youngren B, Austin SJ, Hansen FG (2006) The Escherichia coli chromosome is organized with the left and right chromosome arms in separate cell halves. Mol Microbiol 62:331–338

    Article  CAS  PubMed  Google Scholar 

  24. Wu F, Van Rijn E, Van Schie BGC, Keymer JE, Dekker C (2015) Multi-color imaging of the bacterial nucleoid and division proteins with blue, orange, and near-infrared fluorescent proteins. Front Microbiol 6:607

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gaëlle Demarre or Olivier Espéli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Demarre, G., Prudent, V., Espéli, O. (2017). Imaging the Cell Cycle of Pathogen E. coli During Growth in Macrophage. In: Espéli, O. (eds) The Bacterial Nucleoid. Methods in Molecular Biology, vol 1624. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7098-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7098-8_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7097-1

  • Online ISBN: 978-1-4939-7098-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics