Skip to main content

Determining the Origin of Human Germinal Center B Cell-Derived Malignancies

  • Protocol
  • First Online:
Germinal Centers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1623))

Abstract

Most human B cell lymphomas originate from germinal center (GC) B cells. This is partly caused by the high proliferative activity of GC B cells and the remodeling processes acting at the immunoglobulin (Ig) loci of these cells, i.e., somatic hypermutation and class-switching. Mistargeting of these processes can cause chromosomal translocations, and the hypermutation machinery may also target non-Ig genes. As somatic hypermutation is exclusively active in GC B cells, the presence of somatic mutations in rearranged IgV genes is a standard criterium for a GC or post-GC B cell origin of lymphomas. Beyond this, ongoing somatic hypermutation during lymphoma clone expansion indicates that the lymphoma has an active GC B cell differentiation program. The proto-oncogene BCL6 is specifically expressed in GC B cells and also acquires somatic mutations as a physiological by-product of the somatic hypermutation process, albeit at a lower level than IgV genes. Thus, detection of BCL6 mutations is a further genetic trait of a GC experience of a B cell lymphoma. Typically, B cell lymphomas retain key features of their specific cells of origin, including a differentiation stage-specific gene expression pattern. This is at least partly due to genetic lesions, which “freeze” the lymphoma cells at the differentiation stage at which the transformation occurred. Therefore, identification of the normal B cell subset with the most similar gene expression pattern to a particular type of B cell lymphoma has been instrumental to deduce the precise cell of origin of lymphomas.

We present here protocols to analyze human B cell lymphomas for a potential origin from GC B cells by determining the presence of mutations in rearranged IgV genes and the BCL6 gene, and by comparing the gene expression pattern of lymphoma cells with those of normal B cell subsets by genechip or RNA-sequencing analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rajewsky K (1996) Clonal selection and learning in the antibody system. Nature 381(6585):751–758

    Article  CAS  PubMed  Google Scholar 

  2. Matsuda F, Honjo T (1996) Organization of the human immunoglobulin heavy-chain locus. Adv Immunol 62:1–29

    Article  CAS  PubMed  Google Scholar 

  3. Bräuninger A, Goossens T, Rajewsky K, Küppers R (2001) Regulation of immunoglobulin light chain gene rearrangements during early B cell development in the human. Eur J Immunol 31(12):3631–3637

    Article  PubMed  Google Scholar 

  4. Jacob J, Kelsoe G (1992) In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. II. A common clonal origin for periarteriolar lymphoid sheath-associated foci and germinal centers. J Exp Med 176(3):679–687

    Article  CAS  PubMed  Google Scholar 

  5. De Silva NS, Klein U (2015) Dynamics of B cells in germinal centres. Nat Rev Immunol 15(3):137–148. doi:10.1038/nri3804

    Article  PubMed  PubMed Central  Google Scholar 

  6. Di Noia JM, Neuberger MS (2007) Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem 76:1–22

    Article  PubMed  Google Scholar 

  7. Goossens T, Klein U, Küppers R (1998) Frequent occurrence of deletions and duplications during somatic hypermutation: implications for oncogene translocations and heavy chain disease. Proc Natl Acad Sci U S A 95:2463–2468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Küppers R, Zhao M, Hansmann ML, Rajewsky K (1993) Tracing B cell development in human germinal centres by molecular analysis of single cells picked from histological sections. EMBO J 12(13):4955–4967

    PubMed  PubMed Central  Google Scholar 

  9. Liu YJ, Joshua DE, Williams GT, Smith CA, Gordon J, MacLennan IC (1989) Mechanism of antigen-driven selection in germinal centres. Nature 342(6252):929–931

    Article  CAS  PubMed  Google Scholar 

  10. Xu H, Chaudhri VK, Wu Z, Biliouris K, Dienger-Stambaugh K, Rochman Y, Singh H (2015) Regulation of bifurcating B cell trajectories by mutual antagonism between transcription factors IRF4 and IRF8. Nat Immunol 16(12):1274–1281. doi:10.1038/ni.3287

    Article  CAS  PubMed  Google Scholar 

  11. Basso K, Klein U, Niu H, Stolovitzky GA, Tu Y, Califano A, Cattoretti G, Dalla-Favera R (2004) Tracking CD40 signaling during germinal center development. Blood 104(13):4088–4096. doi:10.1182/blood-2003-12-4291

    Article  CAS  PubMed  Google Scholar 

  12. Heise N, De Silva NS, Silva K, Carette A, Simonetti G, Pasparakis M, Klein U (2014) Germinal center B cell maintenance and differentiation are controlled by distinct NF-kappaB transcription factor subunits. J Exp Med 211(10):2103–2118. doi:10.1084/jem.20132613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dominguez-Sola D, Kung J, Holmes AB, Wells VA, Mo T, Basso K, Dalla-Favera R (2015) The FOXO1 transcription factor instructs the germinal center dark zone program. Immunity 43(6):1064–1074. doi:10.1016/j.immuni.2015.10.015

    Article  CAS  PubMed  Google Scholar 

  14. Calado DP, Sasaki Y, Godinho SA, Pellerin A, Kochert K, Sleckman BP, de Alboran IM, Janz M, Rodig S, Rajewsky K (2012) The cell-cycle regulator c-Myc is essential for the formation and maintenance of germinal centers. Nat Immunol 13(11):1092–1100. doi:10.1038/ni.2418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dominguez-Sola D, Victora GD, Ying CY, Phan RT, Saito M, Nussenzweig MC, Dalla-Favera R (2012) The proto-oncogene MYC is required for selection in the germinal center and cyclic reentry. Nat Immunol 13(11):1083–1091. doi:10.1038/ni.2428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Seifert M, Küppers R (2009) Molecular footprints of a germinal center derivation of human IgM+(IgD+)CD27+ B cells and the dynamics of memory B cell generation. J Exp Med 206(12):2659–2669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pasqualucci L, Migliazza A, Fracchiolla N, William C, Neri A, Baldini L, Chaganti RSK, Klein U, Küppers R, Rajewsky K, Dalla-Favera R (1998) BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc Natl Acad Sci U S A 95:11816–11821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fukita Y, Jacobs H, Rajewsky K (1998) Somatic hypermutation in the heavy chain locus correlates with transcription. Immunity 9:105–114

    Article  CAS  PubMed  Google Scholar 

  19. Yang SY, Fugmann SD, Schatz DG (2006) Control of gene conversion and somatic hypermutation by immunoglobulin promoter and enhancer sequences. J Exp Med 203(13):2919–2928. doi:10.1084/jem.20061835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weill JC, Weller S, Reynaud CA (2009) Human marginal zone B cells. Annu Rev Immunol 27:267–285

    Article  CAS  PubMed  Google Scholar 

  21. Budeus B, Schweigle de Reynoso S, Przekopowitz M, Hoffmann D, Seifert M, Küppers R (2015) Complexity of the human memory B-cell compartment is determined by the versatility of clonal diversification in germinal centers. Proc Natl Acad Sci U S A 112(38):E5281–E5289. doi:10.1073/pnas.1511270112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Küppers R, Klein U, Hansmann M-L, Rajewsky K (1999) Cellular origin of human B-cell lymphomas. N Engl J Med 341:1520–1529

    Article  PubMed  Google Scholar 

  23. Klein U, Dalla-Favera R (2008) Germinal centres: role in B-cell physiology and malignancy. Nat Rev Immunol 8(1):22–33

    Article  CAS  PubMed  Google Scholar 

  24. Küppers R (2005) Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer 5(4):251–262

    Article  PubMed  Google Scholar 

  25. Brune V, Tiacci E, Pfeil I, Döring C, Eckerle S, van Noesel CJM, Klapper W, Falini B, von Heydebreck A, Metzler D, Bräuninger A, Hansmann M-L, Küppers R (2008) Origin and pathogenesis of nodular lymphocyte-predominant Hodgkin lymphoma as revealed by global gene expression analysis. J Exp Med 205(10):2251–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tiacci E, Döring C, Brune V, van Noesel CJ, Klapper W, Mechtersheimer G, Falini B, Küppers R, Hansmann ML (2012) Analyzing primary Hodgkin and Reed-Sternberg cells to capture the molecular and cellular pathogenesis of classical Hodgkin lymphoma. Blood 120(23):4609–4620. doi:10.1182/blood-2012-05-428896

    Article  CAS  PubMed  Google Scholar 

  27. Basso K, Liso A, Tiacci E, Benedetti R, Pulsoni A, Foa R, Di Raimondo F, Ambrosetti A, Califano A, Klein U, Dalla Favera R, Falini B (2004) Gene expression profiling of hairy cell leukemia reveals a phenotype related to memory B cells with altered expression of chemokine and adhesion receptors. J Exp Med 199(1):59–68. doi:10.1084/jem.20031175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Klein U, Tu Y, Stolovitzky GA, Mattioli M, Cattoretti G, Husson H, Freedman A, Inghirami G, Cro L, Baldini L, Neri A, Califano A, Dalla-Favera R (2001) Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J Exp Med 194(11):1625–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Seifert M, Sellmann L, Bloehdorn J, Wein F, Stilgenbauer S, Dürig J, Küppers R (2012) Cellular origin and pathophysiology of chronic lymphocytic leukemia. J Exp Med 209(12):2183–2198. doi:10.1084/jem.20120833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson J Jr, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Levy R, Wilson W, Grever MR, Byrd JC, Botstein D, Brown PO, Staudt LM (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403(6769):503–511. doi:10.1038/35000501

    Article  CAS  PubMed  Google Scholar 

  31. Küppers R, Dalla-Favera R (2001) Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene 20(40):5580–5594

    Article  PubMed  Google Scholar 

  32. Fukuda T, Yoshida T, Okada S, Hatano M, Miki T, Ishibashi K, Okabe S, Koseki H, Hirosawa S, Taniguchi M, Miyasaka N, Tokuhisa T (1997) Disruption of the Bcl6 gene results in an impaired germinal center formation. J Exp Med 186(3):439–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. He B, Qiao X, Cerutti A (2004) CpG DNA induces IgG class switch DNA recombination by activating human B cells through an innate pathway that requires TLR9 and cooperates with IL-10. J Immunol 173(7):4479–4491

    Article  CAS  PubMed  Google Scholar 

  34. Kulis M, Merkel A, Heath S, Queiros AC, Schuyler RP, Castellano G, Beekman R, Raineri E, Esteve A, Clot G, Verdaguer-Dot N, Duran-Ferrer M, Russinol N, Vilarrasa-Blasi R, Ecker S, Pancaldi V, Rico D, Agueda L, Blanc J, Richardson D, Clarke L, Datta A, Pascual M, Agirre X, Prosper F, Alignani D, Paiva B, Caron G, Fest T, Muench MO, Fomin ME, Lee ST, Wiemels JL, Valencia A, Gut M, Flicek P, Stunnenberg HG, Siebert R, Küppers R, Gut IG, Campo E, Martin-Subero JI (2015) Whole-genome fingerprint of the DNA methylome during human B cell differentiation. Nat Genet 47(7):746–756. doi:10.1038/ng.3291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Oakes CC, Seifert M, Assenov Y, Gu L, Przekopowitz M, Ruppert AS, Wang Q, Imbusch CD, Serva A, Koser SD, Brocks D, Lipka DB, Bogatyrova O, Weichenhan D, Brors B, Rassenti L, Kipps TJ, Mertens D, Zapatka M, Lichter P, Döhner H, Küppers R, Zenz T, Stilgenbauer S, Byrd JC, Plass C (2016) DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nat Genet 48(3):253–264. doi:10.1038/ng.3488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kawasaki ES (2006) The end of the microarray Tower of Babel: will universal standards lead the way? J Biomol Tech 17(3):200–206

    PubMed  PubMed Central  Google Scholar 

  37. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63. doi:10.1038/nrg2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shanker S, Paulson A, Edenberg HJ, Peak A, Perera A, Alekseyev YO, Beckloff N, Bivens NJ, Donnelly R, Gillaspy AF, Grove D, Gu W, Jafari N, Kerley-Hamilton JS, Lyons RH, Tepper C, Nicolet CM (2015) Evaluation of commercially available RNA amplification kits for RNA sequencing using very low input amounts of total RNA. J Biomol Tech 26(1):4–18. doi:10.7171/jbt.15-2601-001

    PubMed  PubMed Central  Google Scholar 

  39. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL, Delabesse E, Davi F, Schuuring E, Garcia-Sanz R, van Krieken JH, Droese J, Gonzalez D, Bastard C, White HE, Spaargaren M, Gonzalez M, Parreira A, Smith JL, Morgan GJ, Kneba M, Macintyre EA (2003) Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 17(12):2257–2317

    Article  PubMed  Google Scholar 

  41. Bräuninger A, Küppers R, Spieker T, Siebert R, Strickler JG, Schlegelberger B, Rajewsky K, Hansmann ML (1999) Molecular analysis of single B cells from T cell-rich B-cell lymphoma shows the derivation of the tumor cells from mutating germinal center B cells and exemplifies means by which immunoglobulin genes are modified in germinal center B cells. Blood 93:2679–2687

    PubMed  Google Scholar 

  42. Braeuninger A, Küppers R, Strickler JG, Wacker HH, Rajewsky K, Hansmann ML (1997) Hodgkin and Reed-Sternberg cells in lymphocyte predominant Hodgkin disease represent clonal populations of germinal center-derived tumor B cells. Proc Natl Acad Sci U S A 94(17):9337–9342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hieter PA, Maizel JV Jr, Leder P (1982) Evolution of human immunoglobulin kappa J region genes. J Biol Chem 257(3):1516–1522

    CAS  PubMed  Google Scholar 

  44. Ravetch JV, Siebenlist U, Korsmeyer S, Waldmann T, Leder P (1981) Structure of the human immunoglobulin mu locus: characterization of embryonic and rearranged J and D genes. Cell 27(3 Pt 2):583–591

    Article  CAS  PubMed  Google Scholar 

  45. Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL, Buchbinder A, Budman D, Dittmar K, Kolitz J, Lichtman SM, Schulman P, Vinciguerra VP, Rai KR, Ferrarini M, Chiorazzi N (1999) Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94(6):1840–1847

    CAS  PubMed  Google Scholar 

  46. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK (1999) Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 94(6):1848–1854

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Kerstin Heise and Ludger Klein-Hitpass for help in gathering the protocols. Our own work on lymphoma pathogenesis and GEP is supported by the Deutsche Forschungsgemeinschaft through the grants Ku1315/10-1, TRR60/A2, and SE1885/2-1, the Wilhelm Sander Foundation (2014.136.1), the Deutsche Krebshilfe (70112112), and by the Hariy Cell Leukemia Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Küppers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Seifert, M., Küppers, R. (2017). Determining the Origin of Human Germinal Center B Cell-Derived Malignancies. In: Calado, D. (eds) Germinal Centers. Methods in Molecular Biology, vol 1623. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7095-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7095-7_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7094-0

  • Online ISBN: 978-1-4939-7095-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics