Skip to main content

In Vitro Assessment of Guanylyl Cyclase Activity of Plant Receptor Kinases

  • Protocol
  • First Online:
Plant Receptor Kinases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1621))

Abstract

Cyclic nucleotides such as 3′,5′-cyclic adenosine monophosphate (cAMP) and 3′,5′-cyclic guanosine monophosphate (cGMP) are increasingly recognized as key signaling molecules in plants, and a growing number of plant mononucleotide cyclases, both adenylate cyclases (ACs) and guanylate cyclases (GCs), have been reported. Catalytically active cytosolic GC domains have been shown to be part of many plant receptor kinases and hence directly linked to plant signaling and downstream cellular responses. Here we detail, firstly, methods to identify and express essential functional GC domains of receptor kinases, and secondly, we describe mass spectrometric methods to quantify cGMP generated by recombinant GCs from receptor kinases in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ludidi N, Gehring C (2003) Identification of a novel protein with guanylyl cyclase activity in Arabidopsis thaliana. J Biol Chem 278:6490–6494

    Article  CAS  PubMed  Google Scholar 

  2. Gehring C (2010) Adenyl cyclases and cAMP in plant signaling – past and present. Cell Commun Signal 8:15

    Article  PubMed  PubMed Central  Google Scholar 

  3. Marondedze C, Wong A, Thomas L, Irving H, Gehring C (2016) Cyclic nucleotide monophosphates in plants and plant signaling. Handb Exp Pharmacol (in press) doi:10.1007/164_2015_35

  4. Pharmawati M, Billington T, Gehring CA (1998) Stomatal guard cell responses to kinetin and natriuretic peptides are cGMP-dependent. Cell Mol Life Sci 54:272–276

    Article  CAS  PubMed  Google Scholar 

  5. Ederli L, Meier S, Borgogni A, Reale L, Ferranti F, Gehring C, Pasqualini S (2008) cGMP in ozone and NO dependent responses. Plant Signal Behav 3:36–37

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hoshi T (1995) Regulation of voltage dependence of the KAT1 channel by intracellular factors. J Gen Physiol 105:309–328

    Article  CAS  PubMed  Google Scholar 

  7. Ordoñez NM, Marondedze C, Thomas L, Pasqualini S, Shabala L, Shabala S, Gehring C (2014) Cyclic mononucleotides modulate potassium and calcium flux responses to H2O2 in Arabidopsis roots. FEBS Lett 588:1008–1015

    Article  PubMed  Google Scholar 

  8. Zelman AK, Dawe A, Gehring C, Berkowitz GA (2012) Evolutionary and structural perspectives of plant cyclic nucleotide-gated cation channels. Front Plant Sci 3:95

    Article  PubMed  PubMed Central  Google Scholar 

  9. Marondedze C, Groen AJ, Thomas L, Lilley KS, Gehring C (2016) A quantitative phosphoproteome analysis of cGMP-dependent cellular responses in Arabidopsis thaliana. Mol Plant 9:621–623

    Article  CAS  PubMed  Google Scholar 

  10. Meier S, Ruzvidzo O, Morse M, Donaldson L, Kwezi L, Gehring C (2010) The Arabidopsis wall associated kinase-like 10 gene encodes a functional guanylyl cyclase and is co-expressed with pathogen defense related genes. PLoS One 5:e8904

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kwezi L, Meier S, Mungur L, Ruzvidzo O, Irving H, Gehring C (2007) The Arabidopsis thaliana brassinosteroid receptor (AtBRI1) contains a domain that functions as a guanylyl cyclase in vitro. PLoS One 2:e449

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kwezi L, Ruzvidzo O, Wheeler JI, Govender K, Iacuone S, Thompson PE, Gehring C, Irving HR (2011) The phytosulfokine (PSK) receptor is capable of guanylate cyclase activity and enabling cyclic GMP-dependent signaling in plants. J Biol Chem 286:22580–22588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qi Z, Verma R, Gehring C, Yamaguchi Y, Zhao Y, Ryan CA, Berkowitz GA (2010) Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels. Proc Natl Acad Sci U S A 107:21193–21198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Turek I, Gehring C (2016) The plant natriuretic peptide receptor is a guanylyl cyclase and enables cGMP-dependent signaling. Plant Mol Biol 91(3):275–286

    Article  CAS  PubMed  Google Scholar 

  15. Muleya V, Wheeler JI, Irving HR (2013) Structural and functional characterization of receptor kinases with nucleotide cyclase activity. Methods Mol Biol 1016:175–194

    Article  CAS  PubMed  Google Scholar 

  16. Freihat L, Muleya V, Manallack DT, Wheeler JI, Irving HR (2014) Comparison of moonlighting guanylate cyclases: roles in signal direction? Biochem Soc Trans 42:1773–1779

    Article  CAS  PubMed  Google Scholar 

  17. Muleya V, Wheeler JI, Ruzvidzo O, Freihat L, Manallack DT, Gehring C, Irving HR (2014) Calcium is the switch in the moonlighting dual function of the ligand-activated receptor kinase phytosulfokine receptor 1. Cell Commun Signal 12:60

    Article  PubMed  PubMed Central  Google Scholar 

  18. Meier S, Seoighe C, Kwezi L, Irving H, Gehring C (2007) Plant nucleotide cyclases: an increasingly complex and growing family. Plant Signal Behav 2:536–539

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wong A, Gehring C (2013) The Arabidopsis thaliana proteome harbors undiscovered multi-domain molecules with functional guanylyl cyclase catalytic centers. Cell Commun Signal 11:48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Van Damme T, Zhang Y, Lynen F, Sandra P (2012) Determination of cyclic guanosine- and cyclic adenosine monophosphate (cGMP and cAMP) in human plasma and animal tissues by solid phase extraction on silica and liquid chromatography-triple quadrupole mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 909:14–21

    Article  PubMed  Google Scholar 

  21. Martens-Lobenhoffer J, Dautz C, Bode-Boger SM (2010) Improved method for the determination of cyclic guanosine monophosphate (cGMP) in human plasma by LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 878:487–491

    Article  CAS  PubMed  Google Scholar 

  22. Zhang Y, Dufield D, Klover J, Li W, Szekely-Klepser G, Lepsy C, Sadagopan N (2009) Development and validation of an LC-MS/MS method for quantification of cyclic guanosine 3′,5′-monophosphate (cGMP) in clinical applications: a comparison with a EIA method. J Chromatogr B Analyt Technol Biomed Life Sci 877:513–520

    Article  CAS  PubMed  Google Scholar 

  23. Oeckl P, Ferger B (2012) Simultaneous LC-MS/MS analysis of the biomarkers cAMP and cGMP in plasma, CSF and brain tissue. J Neurosci Methods 203:338–343

    Article  CAS  PubMed  Google Scholar 

  24. Witters E, van Dongen W, Esmans EL, van Onckelen HA (1997) Ion-pair liquid chromatography-electrospray mass spectrometry for the analysis of cyclic nucleotides. J Chromatogr B Biomed Sci Appl 694:55–63

    Article  CAS  PubMed  Google Scholar 

  25. Jia X, Fontaine BM, Strobel F, Weinert EE (2014) A facile and sensitive method for quantification of cyclic nucleotide monophosphates in mammalian organs: basal levels of eight cNMPs and identification of 2′,3′-cIMP. Biomol Ther 4:1070–1092

    Google Scholar 

  26. Goutier W, Spaans PA, van der Neut MA, McCreary AC, Reinders JH (2010) Development and application of an LC-MS/MS method for measuring the effect of (partial) agonists on cAMP accumulation in vitro. J Neurosci Methods 188:24–31

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the KAUST Analytical Core Lab for supporting this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Gehring .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Raji, M., Gehring, C. (2017). In Vitro Assessment of Guanylyl Cyclase Activity of Plant Receptor Kinases. In: Aalen, R. (eds) Plant Receptor Kinases. Methods in Molecular Biology, vol 1621. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7063-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7063-6_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7062-9

  • Online ISBN: 978-1-4939-7063-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics