Skip to main content

Expression of Plant Receptor Kinases in E. coli

  • Protocol
  • First Online:
  • 1479 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1621))

Abstract

Plant receptor kinases play diverse signaling roles in disease resistance and plant development. They represent a large plant gene family with over 600 members in Arabidopsis thaliana. While the functions of several members of the receptor kinase family have now been elucidated, a great proportion still remains uncharacterized. The structural and functional characterization of such plant receptor kinases may entail biochemical approaches that require access to purified protein, which can be made possible through heterologous protein expression. This chapter describes a strategy for expressing plant receptor kinases in E. coli, a bacterial host that has successfully been used to express and purify certain plant receptor kinase domains, some of which were subsequently used for biochemical assays. As full-length receptor-like kinases may be difficult to express, it is suggested to clone and express domains separately, after having identified domain borders using bioinformatics tools. A detailed cloning protocol is provided, as well as advice for testing expression efficiency and handling of expressed protein ending up in inclusion bodies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. McCarty DR, Chory J (2000) Conservation and innovation in plant signaling pathways. Cell 103(2):201–209. doi:10.1016/S0092-8674(00)00113-6

    Article  CAS  PubMed  Google Scholar 

  2. Becraft PW (2002) Receptor kinase signaling in plant development. Annu Rev Cell Dev Biol 18:163–192. doi:10.1146/annurev.cellbio.18.012502.083431

    Article  CAS  PubMed  Google Scholar 

  3. Shiu SH, Bleecker AB (2001) Plant receptor-like kinase gene family: diversity, function, and signaling. Sci STKE 2001(113):re22. doi:10.1126/stke.2001.113.re22

    CAS  PubMed  Google Scholar 

  4. Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP (2013) Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. J Exp Bot 64(2):445–458. doi:10.1093/jxb/ers354

    Article  CAS  PubMed  Google Scholar 

  5. Tichtinsky G, Vanoosthuyse V, Cock JM, Gaude T (2003) Making inroads into plant receptor kinase signalling pathways. Trends Plant Sci 8(5):231–237. doi:10.1016/S1360-1385(03)00062-1

    Article  CAS  PubMed  Google Scholar 

  6. Torii KU (2009) Transmembrane receptors in plants: receptor kinases and their ligands. In: Annual plant reviews volume 33: intracellular signaling in plants. Wiley-Blackwell, pp 1–29. doi:10.1002/9781444302387.ch1

  7. Walker JC, Zhang R (1990) Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica. Nature 345(6277):743–746. doi:10.1038/345743a0

    Article  CAS  PubMed  Google Scholar 

  8. Shiu S-H, Karlowski WM, Pan R, Tzeng Y-H, Mayer KFX, Li W-H (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16(5):1220–1234. doi:10.1105/tpc.020834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shiu S-H, Bleecker AB (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA 98(19):10763–10768. doi:10.1073/pnas.181141598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shiu SH, Bleecker AB (2003) Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132(2):530–543. doi:10.1104/pp.103.021964

    Article  CAS  PubMed  Google Scholar 

  11. Fischer I, Dievart A, Droc G, Dufayard JF, Chantret N (2016) Evolutionary dynamics of the leucine-rich repeat receptor-like kinase (LRR-RLK) subfamily in angiosperms. Plant Physiol 170(3):1595–1610. doi:10.1104/pp.15.01470

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gou X, He K, Yang H, Yuan T, Lin H, Clouse SD, Li J (2010) Genome-wide cloning and sequence analysis of leucine-rich repeat receptor-like protein kinase genes in Arabidopsis thaliana. BMC Genomics 11(1):1–15. doi:10.1186/1471-2164-11-19

    Article  Google Scholar 

  13. Han Z, Sun Y, Chai J (2014) Structural insight into the activation of plant receptor kinases. Curr Opin Plant Biol 20:55–63. doi:10.1016/j.pbi.2014.04.008

    Article  CAS  PubMed  Google Scholar 

  14. Horn MA, Walker JC (1995) Chapter 37 Expression and assay of autophosphorylation of recombinant protein kinases. In: Galbraith DW, Bohnert HJ, Bourque PB (eds) Methods in cell biology, vol 49. Academic Press, pp 531–541. doi:10.1016/S0091-679X(08)61478-8

  15. Peti W, Page R (2007) Strategies to maximize heterologous protein expression in Escherichia coli with minimal cost. Protein Expr Purif 51(1):1–10. doi:10.1016/j.pep.2006.06.024

    Article  CAS  PubMed  Google Scholar 

  16. Horn MA, Walker JC (1994) Biochemical properties of the autophosphorylation of RLK5, a receptor-like protein kinase from Arabidopsis thaliana. Biochim Biophys Acta 1208(1):65–74

    Article  CAS  PubMed  Google Scholar 

  17. Oh M-H, Ray WK, Huber SC, Asara JM, Gage DA, Clouse SD (2000) Recombinant brassinosteroid insensitive 1 receptor-like kinase autophosphorylates on serine and threonine residues and phosphorylates a conserved peptide motif in vitro. Plant Physiol 124(2):751–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110(2):213–222. doi:10.1016/S0092-8674(02)00812-7

  19. Tameling WI, Elzinga SD, Darmin PS, Vossen JH, Takken FL, Haring MA, Cornelissen BJ (2002) The tomato R gene products I-2 and MI-1 are functional ATP binding proteins with ATPase activity. Plant Cell 14(11):2929–2939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Boyes DC, Nam J, Dangl JL (1998) The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response. Proc Natl Acad Sci USA 95(26):15849–15854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Afzal AJ, Lightfoot DA (2007) Soybean disease resistance protein RHG1-LRR domain expressed, purified and refolded from Escherichia coli inclusion bodies: preparation for a functional analysis. Protein Expr Purif 53(2):346–355. doi:10.1016/j.pep.2006.12.017

    Article  CAS  PubMed  Google Scholar 

  22. Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22(11):1399–1408. doi:10.1038/nbt1029

    Article  CAS  PubMed  Google Scholar 

  23. Fischer B, Perry B, Sumner I, Goodenough P (1992) A novel sequential procedure to enhance the renaturation of recombinant protein from Escherichia coli inclusion bodies. Protein Eng 5(6):593–596

    Article  CAS  PubMed  Google Scholar 

  24. Misawa S, Kumagai I (1999) Refolding of therapeutic proteins produced in Escherichia coli as inclusion bodies. Biopolymers 51(4):297–307. doi:10.1002/(sici)1097-0282(1999)51:4<297::aid-bip5>3.0.co;2-i

    Article  CAS  PubMed  Google Scholar 

  25. Mitchell A, Chang H-Y, Daugherty L, Fraser M, Hunter S, Lopez R, McAnulla C, McMenamin C, Nuka G, Pesseat S, Sangrador-Vegas A, Scheremetjew M, Rato C, Yong S-Y, Bateman A, Punta M, Attwood TK, Sigrist CJA, Redaschi N, Rivoire C, Xenarios I, Kahn D, Guyot D, Bork P, Letunic I, Gough J, Oates M, Haft D, Huang H, Natale DA, Wu CH, Orengo C, Sillitoe I, Mi H, Thomas PD, Finn RD (2015) The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res 43(Database issue):D213–D221. doi:10.1093/nar/gku1243

    Article  PubMed  Google Scholar 

  26. Lobley A, Sadowski MI, Jones DT (2009) pGenTHREADER and pDomTHREADER: new methods for improved protein fold recognition and superfamily discrimination. Bioinformatics 25(14):1761–1767. doi:10.1093/bioinformatics/btp302

    Article  CAS  PubMed  Google Scholar 

  27. Structural Genomics C, Architecture et Fonction des Macromolécules B, Berkeley Structural Genomics C, China Structural Genomics C, Integrated Center for S, Function I, Israel Structural Proteomics C, Joint Center for Structural G, Midwest Center for Structural G, New York Structural Genomi XRCfSG, Northeast Structural Genomics C, Oxford Protein Production F, Protein Sample Production Facility MDCfMM, Initiative RSGP, Complexes S (2008) Protein production and purification. Nat Methods 5(2):135–146. doi:10.1038/nmeth.f.202

    Article  Google Scholar 

  28. McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16(4):404–405. doi:10.1093/bioinformatics/16.4.404

    Article  CAS  PubMed  Google Scholar 

  29. Reich S, Puckey LH, Cheetham CL, Harris R, Ali AA, Bhattacharyya U, Maclagan K, Powell KA, Prodromou C, Pearl LH, Driscoll PC, Savva R (2006) Combinatorial domain hunting: an effective approach for the identification of soluble protein domains adaptable to high-throughput applications. Protein Sci 15(10):2356–2365. doi:10.1110/ps.062082606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172. doi:10.3389/fmicb.2014.00172

    PubMed  PubMed Central  Google Scholar 

  31. Costa S, Almeida A, Castro A, Domingues L (2014) Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system. Front Microbiol 5:63. doi:10.3389/fmicb.2014.00063

    PubMed  PubMed Central  Google Scholar 

  32. Kapust RB, Waugh DS (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci 8(8):1668–1674. doi:10.1110/ps.8.8.1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Terpe K (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60(5):523–533. doi:10.1007/s00253-002-1158-6

    Article  CAS  PubMed  Google Scholar 

  34. Kimple ME, Brill AL, Pasker RL (2013) Overview of affinity tags for protein purification. Curr Protoc Protein Sci. doi:10.1002/0471140864.ps0909s73

  35. Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22(7):346–353. doi:10.1016/j.tibtech.2004.04.006

    Article  CAS  PubMed  Google Scholar 

  36. Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260(3):289–298. doi:10.1006/jmbi.1996.0399

    Article  CAS  PubMed  Google Scholar 

  37. Korpimaki T, Kurittu J, Karp M (2003) Surprisingly fast disappearance of beta-lactam selection pressure in cultivation as detected with novel biosensing approaches. J Microbiol Methods 53(1):37–42

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Jawaad Afzal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Agha, M.A., Lightfoot, D., Afzal, A.J. (2017). Expression of Plant Receptor Kinases in E. coli . In: Aalen, R. (eds) Plant Receptor Kinases. Methods in Molecular Biology, vol 1621. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7063-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7063-6_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7062-9

  • Online ISBN: 978-1-4939-7063-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics