Skip to main content

Shotgun and Targeted Plasma Proteomics to Predict Prognosis of Non-Small Cell Lung Cancer

  • Protocol
  • First Online:
Serum/Plasma Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1619))

Abstract

Lung cancer is the leading cause of cancer deaths worldwide. Clinically, the treatment of non-small cell lung cancer (NSCLC) can be improved by the early detection and risk screening among population. To meet this need, here we describe in detail a shotgun following the targeted proteomics workflow that we previously applied for human plasma analysis, which involves (1) the application of extensive peptide-level fractionation coupled with label-free quantitative proteomics for the discovery of plasma biomarker candidates for lung cancer and (2) the usage of the multiple reaction monitoring (MRM) assays for the follow-up validations in the verification phase. The workflow features simplicity, low cost, high transferability, high robustness, and flexibility with specific instrumental settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal A, Siegel R, Ward E et al (2009) Cancer statistics, 2009. CA Cancer J Clin 59(4):225–249

    Article  PubMed  Google Scholar 

  2. O'Byrne KJ, Danson S, Dunlop D et al (2007) Combination therapy with gefitinib and rofecoxib in patients with platinum-pretreated relapsed non small-cell lung cancer. J Clin Oncol 25(22):3266–3273

    Article  PubMed  Google Scholar 

  3. Huttenhain R, Malmstrom J, Picotti P et al (2009) Perspectives of targeted mass spectrometry for protein biomarker verification. Curr Opin Chem Biol 13(5–6):518–525

    Article  PubMed  PubMed Central  Google Scholar 

  4. Liu YS, Li C, Xing Z et al (2010) Proteomic mining in the dysplastic liver of WHV/c-myc mice—insights and indicators for early hepatocarcinogenesis. FEBS J 277(19):4039–4053

    Article  CAS  PubMed  Google Scholar 

  5. Eng J, McCormack A, Yates J (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5(11):976–989

    Article  CAS  PubMed  Google Scholar 

  6. Perkins DN, Pappin DJ, Creasy DM et al (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18):3551–3567

    Article  CAS  PubMed  Google Scholar 

  7. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372

    Article  CAS  PubMed  Google Scholar 

  8. Zhou H, Dai J, Sheng QH et al (2007) A fully automated 2-D LC-MS method utilizing online continuous pH and RP gradients for global proteome analysis. Electrophoresis 28(23):4311–4319

    Article  CAS  PubMed  Google Scholar 

  9. Tang LY, Deng N, Wang LS et al (2007) Quantitative phosphoproteome profiling of Wnt3a-mediated signaling network: indicating the involvement of ribonucleoside-diphosphate reductase M2 subunit phosphorylation at residue serine 20 in canonical Wnt signal transduction. Mol Cell Proteomics 6(11):1952–1967

    Article  CAS  PubMed  Google Scholar 

  10. Deng WJ, Nie S, Dai J et al (2010) Proteome, phosphoproteome, and hydroxyproteome of liver mitochondria in diabetic rats at early pathogenic stages. Mol Cell Proteomics 9(1):100–116

    Article  CAS  PubMed  Google Scholar 

  11. Keshishian H, Addona T, Burgess M et al (2007) Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution. Mol Cell Proteomics 6(12):2212–2229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Taylor IW, Linding R, Warde-Farley D et al (2009) Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol 27(2):199–204

    Article  CAS  PubMed  Google Scholar 

  13. Peat JK, Barton B (2005) Medical statistics : a guide to data analysis and critical appraisal, 1st edn. Blackwell Publishers, Malden, MA. xii, 324p

    Book  Google Scholar 

  14. Breiman L, Friedman RA, Olshen RA (1984) In: Group WI (ed) Classification and regression trees. Belmont, Chapman and Hall

    Google Scholar 

  15. Patz EF Jr, Campa MJ, Gottlin EB et al (2007) Panel of serum biomarkers for the diagnosis of lung cancer. J Clin Oncol 25(35):5578–5583

    Article  PubMed  Google Scholar 

  16. O'Shaughnessy DF, Atterbury C, Bolton Maggs P et al (2004) Guidelines for the use of fresh-frozen plasma, cryoprecipitate and cryosupernatant. Br J Haematol 126(1):11–28

    Article  PubMed  Google Scholar 

  17. https://www.thermofisher.com/cn/en/home/references/protocols/cell-and-tissue-analysis/elisa-protocol/elisa-sample-preparation-protocols/plasma-and-serum-preparation.html

  18. Mitchell BL, Yasui Y, Li CI et al (2005) Impact of freeze-thaw cycles and storage time on plasma samples used in mass spectrometry based biomarker discovery projects. Cancer Inform 1:98–104

    CAS  PubMed  Google Scholar 

  19. Carvalho PC, Lima DB, Leprevost FV et al (2016) Integrated analysis of shotgun proteomic data with PatternLab for proteomics 4.0. Nat Protoc 11(1):102–117

    Article  CAS  PubMed  Google Scholar 

  20. Liu YS, Luo XY, Li QR et al (2012) Shotgun and targeted proteomics reveal that pre-surgery serum levels of LRG1, SAA, and C4BP may refine prognosis of resected squamous cell lung cancer. J Mol Cell Biol 4(5):344–347

    Article  CAS  PubMed  Google Scholar 

  21. Li RX, Chen HB, Tu K et al (2008) Localized-statistical quantification of human serum proteome associated with type 2 diabetes. PLoS One 3(9):e3224

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kuzyk MA, Smith D, Yang J et al (2009) Multiple reaction monitoring-based, multiplexed, absolute quantitation of 45 proteins in human plasma. Mol Cell Proteomics 8(8):1860–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Li, QR., Liu, YS., Zeng, R. (2017). Shotgun and Targeted Plasma Proteomics to Predict Prognosis of Non-Small Cell Lung Cancer. In: Greening, D., Simpson, R. (eds) Serum/Plasma Proteomics. Methods in Molecular Biology, vol 1619. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7057-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7057-5_26

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7056-8

  • Online ISBN: 978-1-4939-7057-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics