Skip to main content

Lipidomics of Human Blood Plasma by High-Resolution Shotgun Mass Spectrometry

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1619))

Abstract

Clinical lipidomics is an emerging biomarker discovery approach that compares lipid profiles under pathologically and physiologically normal conditions. Here we describe a method for the absolute (molar) quantification of more than 200 molecules from 14 major lipid classes from 5 μL of human blood plasma using high-resolution top-down shotgun mass spectrometry. Because of its technical simplicity and robustness, the protocol lends itself for high-throughput clinical lipidomics screens.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Quehenberger O, Dennis EA (2011) The human plasma lipidome. N Engl J Med 365:1812–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Quehenberger O, Armando AM, Brown AH et al (2010) Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res 51:3299–3305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pietilainen KH, Sysi-Aho M, Rissanen A et al (2007) Acquired obesity is associated with changes in the serum lipidomic profile independent of genetic effects - a monozygotic twin study. PLoS One 2:e218

    Article  PubMed  PubMed Central  Google Scholar 

  4. Oresic M, Simell S, Sysi-Aho M et al (2008) Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. J Exp Med 205:2975–2984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rhee EP, Cheng S, Larson MG et al (2011) Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. J Clin Invest 121:1402–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tagami S, Inokuchi Ji J, Kabayama K et al (2002) Ganglioside GM3 participates in the pathological conditions of insulin resistance. J Biol Chem 277:3085–3092

    Article  CAS  PubMed  Google Scholar 

  7. Graessler J, Schwudke D, Schwarz PE et al (2009) Top-down lipidomics reveals ether lipid deficiency in blood plasma of hypertensive patients. PLoS One 4:e6261. doi:10.1371/journal.pone.0006261

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fernandez C, Sandin M, Sampaio JL et al (2013) Plasma lipid composition and risk of developing cardiovascular disease. PLoS One 8:e71846. doi:10.1371/journal.pone.0071846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tarasov K, Ekroos K, Suoniemi M et al (2014) Molecular lipids identify cardiovascular risk and are efficiently lowered by simvastatin and PCSK9 deficiency. J Clin Endocrinol Metab 99:E45–E52

    Article  PubMed  Google Scholar 

  10. Han X, Rozen S, Boyle SH et al (2011) Metabolomics in early Alzheimer’s disease: identification of altered plasma sphingolipidome using shotgun lipidomics. PLoS One 6:e21643. doi:10.1371/journal.pone.0021643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wood PL, Filiou MD, Otte DM et al (2014) Lipidomics reveals dysfunctional glycosynapses in schizophrenia and the G72/G30 transgenic mouse. Schizophr Res 159:365–369

    Article  PubMed  Google Scholar 

  12. Oresic M, Seppanen-Laakso T, Sun D et al (2012) Phospholipids and insulin resistance in psychosis: a lipidomics study of twin pairs discordant for schizophrenia. Genome Med 4:1. doi:10.1186/gm300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. De Leon H, Boue S, Szostak J et al (2015) Systems biology research into cardiovascular disease: contributions of lipidomics-based approaches to biomarker discovery. Curr Drug Discov Technol 12:129–154

    Article  PubMed  Google Scholar 

  14. Smilowitz JT, Zivkovic AM, Wan YJ et al (2013) Nutritional lipidomics: molecular metabolism, analytics, and diagnostics. Mol Nutr Food Res 57:1319–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gräßler J, Kopprasch S, Passauer J et al (2013) Differential effects of lipoprotein apheresis by lipidfiltration or dextran sulfate adsorption on lipidomic profile. Atheroscler Suppl 14:151–155

    Article  PubMed  Google Scholar 

  16. Graessler J, Bornstein TD, Goel D et al (2014) Lipidomic profiling before and after Roux-en-Y gastric bypass in obese patients with diabetes. Pharmacogenomics J 14:201–207

    Article  CAS  PubMed  Google Scholar 

  17. Hyotylainen T, Oresic M (2015) Optimizing the lipidomics workflow for clinical studies-practical considerations. Anal Bioanal Chem 407:4973–4993

    Article  CAS  PubMed  Google Scholar 

  18. Wang C, Wang M, Han X (2015) Applications of mass spectrometry for cellular lipid analysis. Mol Biosyst 11:698–713

    Article  PubMed  PubMed Central  Google Scholar 

  19. Moore JD, Caufield WV, Shaw WA (2007) Quantitation and standardization of lipid internal standards for mass spectroscopy. Methods Enzymol 432:351–367

    Article  CAS  PubMed  Google Scholar 

  20. Wang M, Wang C, Han X (2016) Selection of internal standards for accurate quantification of complex lipid species in biological extracts by electrospray ionization mass spectrometry-what, how and why? Mass Spectrom Rev. doi:10.1002/mas.21492

    Google Scholar 

  21. Sales S, Graessler J, Ciucci S et al (2016) Gender, contraceptives and individual metabolic predisposition shape a healthy plasma lipidome. Sci Rep 6:27710. doi:10.1038/srep27710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Herzog R, Schwudke D, Schuhmann K et al (2011) A novel informatics concept for high-throughput shotgun lipidomics based on the molecular fragmentation query language. Genome Biol 12:R8. doi:10.1186/gb-2011-12-1-r8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schuhmann K, Almeida R, Baumert M et al (2012) Shotgun lipidomics on a LTQ Orbitrap mass spectrometer by successive switching between acquisition polarity modes. J Mass Spectrom 47:96–104

    Article  CAS  PubMed  Google Scholar 

  24. Herzog R, Schwudke D, Shevchenko A (2013) LipidXplorer: software for quantitative shotgun lipidomics compatible with multiple mass spectrometry platforms. Curr Protoc Bioinformatics 43:14.12.1–14.12.30. doi:10.1002/0471250953.bi1412s43

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrej Shevchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Sales, S., Knittelfelder, O., Shevchenko, A. (2017). Lipidomics of Human Blood Plasma by High-Resolution Shotgun Mass Spectrometry. In: Greening, D., Simpson, R. (eds) Serum/Plasma Proteomics. Methods in Molecular Biology, vol 1619. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7057-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7057-5_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7056-8

  • Online ISBN: 978-1-4939-7057-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics