Skip to main content

Targeted Approach for Proteomic Analysis of a Hidden Membrane Protein

  • Protocol
  • First Online:
Serum/Plasma Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1619))

Abstract

Given the properties of plasma membrane proteins, namely, their hydrophobicity, low solubility, and high resistance to digestion and extraction, their identification by traditional mass spectrometry (MS) has been a challenging task. Hence, proteomic studies involving the transmembrane protein connexin43 (Cx43) are scarce. Additionally, studies demonstrating the presence of proteins embedded in the lipid bilayer of extracellular vesicles (EVs) are difficult to perform and require specific changes and fine adjustments in the experimental and technical procedure to allow their detection by MS. In this review, we provide a detailed description of the protocol we have used to detect Cx43 in EVs of human peripheral blood. This includes some of the modifications that we have introduced in order to improve the detection of Cx43 in EVs, including an optimization of vesicle isolation, Cx43 purification, MS acquisition data, and further analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Soares AR, Martins-Marques T, Ribeiro-Rodrigues T et al (2015) Gap junctional protein Cx43 is involved in the communication between extracellular vesicles and mammalian cells. Sci Rep 5:13243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Martins-Marques T, Anjo SI, Pereira P et al (2015) Interacting network of the gap junction (GJ) protein Connexin43 (Cx43) is modulated by ischemia and reperfusion in the heart. Mol Cell Proteomics 14:3040–3055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gillet LC, Navarro P, Tate S et al (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11:O111.016717

    Article  PubMed  PubMed Central  Google Scholar 

  4. Anjo SI, Lourenço AS, Melo MN et al (2016) Unraveling mesenchymal stem cells’ dynamic secretome through nontargeted proteomics profiling. Methods Mol Biol 1416:521–549

    Article  CAS  PubMed  Google Scholar 

  5. Ong S-E, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1:252–262

    Article  CAS  PubMed  Google Scholar 

  6. Granvogl B, Plöscher M, Eichacker LA (2007) Sample preparation by in-gel digestion for mass spectrometry-based proteomics. Anal Bioanal Chem 389:991–1002

    Article  CAS  PubMed  Google Scholar 

  7. Finlay EM, Games DE, Startin JR et al (1986) Screening, confirmation, and quantification of sulphonamide residues in pig kidney by tandem mass spectrometry of crude extracts. Biomed Environ Mass Spectrom 13:633–639

    Article  CAS  PubMed  Google Scholar 

  8. Liebler DC, Zimmerman LJ (2013) Targeted quantitation of proteins by mass spectrometry. Biochemistry 52(22):3797–3806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boja ES, Fehniger TE, Baker MS et al (2014) Analytical validation considerations of multiplex mass-spectrometry-based proteomic platforms for measuring protein biomarkers. J Proteome Res 13:5325–5332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boja ES, Rodriguez H (2012) Mass spectrometry-based targeted quantitative proteomics: achieving sensitive and reproducible detection of proteins. Proteomics 12:1093–1110

    Article  CAS  PubMed  Google Scholar 

  11. Liu Y, Hüttenhain R, Surinova S et al (2013) Quantitative measurements of N-linked glycoproteins in human plasma by SWATH-MS. Proteomics 13:1247–1256

    Article  CAS  PubMed  Google Scholar 

  12. Lambert J-P, Ivosev G, Couzens AL et al (2013) Mapping differential interactomes by affinity purification coupled with data-independent mass spectrometry acquisition. Nat Methods 10:1239–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Théry C, Amigorena S, Raposo G et al (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. In: Current protocols in cell biology. John Wiley & Sons, Inc., Hoboken, NJ, pp 3.22.1–3.22.29

    Google Scholar 

  14. Dragovic RA, Gardiner C, Brooks AS et al (2011) Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine 7:780–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Momen-Heravi F, Balaj L, Alian S et al (2012) Alternative methods for characterization of extracellular vesicles. Front Physiol 3:354

    PubMed  PubMed Central  Google Scholar 

  16. Candiano G, Bruschi M, Musante L et al (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25:1327–1333

    Article  CAS  PubMed  Google Scholar 

  17. Tang WH, Shilov IV, Seymour SL (2008) Nonlinear fitting method for determining local false discovery rates from decoy database searches. J Proteome Res 7:3661–3667

    Article  CAS  PubMed  Google Scholar 

  18. Sennels L, Bukowski-Wills J-C, Rappsilber J (2009) Improved results in proteomics by use of local and peptide-class specific false discovery rates. BMC Bioinformatics 10:179

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li M, Zeringer E, Barta T et al (2014) Analysis of the RNA content of the exosomes derived from blood serum and urine and its potential as biomarkers. Philos Trans R Soc Lond B Biol Sci 369:654–659

    Article  Google Scholar 

  20. Turay D, Khan S, Diaz Osterman CJ et al (2016) Proteomic profiling of serum-derived exosomes from ethnically diverse prostate cancer patients. Cancer Invest 34:1–11

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Portuguese Foundation for Science and Technology (FCT) grants, FCT-UID/NEU/04539/2013, PTDC/NEU-NMC/0205/2012, POCI-01-0145-FEDER-007440, and PTDC/NEU-SCC/7051/2014, by REDE/1506/REM/200 and by HealthyAging2020 CENTRO-01-0145-FEDER-000012-N2323. TMM was supported by PD/BD/106043/2015, SIA by SFRH/BD/81495/2011, and TRR by PD/BD/52294/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique Girao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Martins-Marques, T., Anjo, S.I., Ribeiro-Rodrigues, T., Manadas, B., Girao, H. (2017). Targeted Approach for Proteomic Analysis of a Hidden Membrane Protein. In: Greening, D., Simpson, R. (eds) Serum/Plasma Proteomics. Methods in Molecular Biology, vol 1619. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7057-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7057-5_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7056-8

  • Online ISBN: 978-1-4939-7057-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics