Skip to main content

Exploring MicroRNA::Target Regulatory Interactions by Computing Technologies

  • Protocol
  • First Online:
Book cover Bioinformatics in MicroRNA Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1617))

  • 2413 Accesses

Abstract

MiRNA genes (miRNA precursor genes) share some common structural elements with protein genes. As with protein genes, the promoters of miRNA genes are necessary to regulate the expression of miRNA. The computation methods used to find the promoter regions of the protein genes have been applied to miRNA genes and some methods have been designed specifically to find the promoter regions of miRNA genes. The transcription factors (TFs), miRNA, and the targeted genes can form complex regulatory networks in the cells that can be divided into circuits. The miRNA-mediated feed-forward loop (FFL) is the most commonly encountered circuit. The miRNAs can also regulate targeted genes in a collaborative way. Some tools to study these circuits are discussed in this chapter as are some examples of their use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.canevolve.org/dChip-GemiNi.

  2. 2.

    http://service.bioinformatik.uni-saarland.de/tfmir.

  3. 3.

    http://biocluster.di.unito.it/circuits/.

  4. 4.

    http://cmbi.bjmu.edu.cn/hmdd.

References

  1. Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500

    Article  CAS  PubMed  Google Scholar 

  2. Rajewsky N (2006) MicroRNA target predictions in animals. Nat Genet 38:S8–S13

    Article  CAS  PubMed  Google Scholar 

  3. Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V, Sundaresan V (2005) Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res 15(1):78–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jiang P, Wu H, Wang W, Ma W, Sun X, Lu Z (2007) MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res 35(Suppl 2):W339–W344

    Article  PubMed  PubMed Central  Google Scholar 

  5. Qiu C, Wang J, Yao P, Wang E, Cui Q (2010) MicroRNA evolution in a human transcription factor and microRNA regulatory network. BMC Syst Biol 4(1):90

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sengupta D, Bandyopadhyay S (2011) Participation of microRNAs in human interactome: extraction of microRNA–microRNA regulations. Mol Biosyst 7(6):1966–1973

    Article  CAS  PubMed  Google Scholar 

  7. Abeel T, Saeys Y, Bonnet E, Rouzé P, Van de Peer Y (2008) Generic eukaryotic core promoter prediction using structural features of DNA. Genome Res 18(2):310–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhou X, Ruan J, Wang G, Zhang W (2007) Characterization and identification of microRNA core promoters in four model species. PLoS Comput Biol 3(3):e37

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31(1):64–68

    Article  CAS  PubMed  Google Scholar 

  10. Osella M, Bosia C, Corá D, Caselle M (2011) The role of incoherent microRNA-mediated feedforward loops in noise buffering. PLoS Comput Biol 7(3):e1001101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yan Z, Shah PK, Amin SB, Samur MK, Huang N, Wang X, Misra V, Ji H, Gabuzda D, Li C (2012) Integrative analysis of gene and miRNA expression profiles with transcription factor–miRNA feed-forward loops identifies regulators in human cancers. Nucleic Acids Res 40(17):e135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hamed M, Spaniol C, Nazarieh M, Helms V (2015) TFmiR: a web server for constructing and analyzing disease-specific transcription factor and miRNA co-regulatory networks. Nucleic Acids Res 43(W1):W283–W288

    Article  PubMed  PubMed Central  Google Scholar 

  13. Friard O, Re A, Taverna D, De Bortoli M, Corá D (2010) CircuitsDB: a database of mixed microRNA/transcription factor feed-forward regulatory circuits in human and mouse. BMC Bioinformatics 11(1):435

    Article  PubMed  PubMed Central  Google Scholar 

  14. Liu J, Ye X, Wu F-X (2013) Characterizing dynamic regulatory programs in mouse lung development and their potential association with tumourigenesis via miRNA-TF-mRNA circuits. BMC Syst Biol 7(Suppl 2):S11

    Article  PubMed  PubMed Central  Google Scholar 

  15. Meng Y, Huang F, Shi Q, Cao J, Chen D, Zhang J, Ni J, Wu P, Chen M (2009) Genome-wide survey of rice microRNAs and microRNA–target pairs in the root of a novel auxin-resistant mutant. Planta 230(5):883–898

    Article  CAS  PubMed  Google Scholar 

  16. Yoon EK, Yang JH, Lim J, Kim SH, Kim S-K, Lee WS (2009) Auxin regulation of the microRNA390-dependent transacting small interfering RNA pathway in Arabidopsis lateral root development. Nucleic Acids Res 38(4):1382–1391

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lu L, Zhou L, Chen EZ, Sun K, Jiang P, Wang L, Su X, Sun H, Wang H (2012) A novel YY1-miR-1 regulatory circuit in skeletal myogenesis revealed by genome-wide prediction of YY1-miRNA network. PLoS One 7(2):e27596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Forrest AR, Kanamori-Katayama M, Tomaru Y, Lassmann T, Ninomiya N, Takahashi Y, de Hoon MJ, Kubosaki A, Kaiho A, Suzuki M (2010) Induction of microRNAs, mir-155, mir-222, mir-424 and mir-503, promotes monocytic differentiation through combinatorial regulation. Leukemia 24(2):460–466

    Article  CAS  PubMed  Google Scholar 

  19. Xu J, Li C-X, Li Y-S, Lv J-Y, Ma Y, Shao T-T, Xu L-D, Wang Y-Y, Du L, Zhang Y-P (2011) MiRNA–miRNA synergistic network: construction via co-regulating functional modules and disease miRNA topological features. Nucleic Acids Res 39(3):825–836

    Article  CAS  PubMed  Google Scholar 

  20. Li Y, Qiu C, Tu J, Geng B, Yang J, Jiang T, Cui Q (2014) HMDD v2. 0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res 42(D1):D1070–D1074

    Article  CAS  PubMed  Google Scholar 

  21. Lu M, Zhang Q, Deng M, Miao J, Guo Y, Gao W, Cui Q (2008) An analysis of human microRNA and disease associations. PLoS One 3(10):e3420

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Lan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Hu, Y., Lan, W., Miller, D. (2017). Exploring MicroRNA::Target Regulatory Interactions by Computing Technologies. In: Huang, J., et al. Bioinformatics in MicroRNA Research. Methods in Molecular Biology, vol 1617. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7046-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7046-9_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7044-5

  • Online ISBN: 978-1-4939-7046-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics