Exploring MicroRNA::Target Regulatory Interactions by Computing Technologies

  • Yue Hu
  • Wenjun LanEmail author
  • Daniel Miller
Part of the Methods in Molecular Biology book series (MIMB, volume 1617)


MiRNA genes (miRNA precursor genes) share some common structural elements with protein genes. As with protein genes, the promoters of miRNA genes are necessary to regulate the expression of miRNA. The computation methods used to find the promoter regions of the protein genes have been applied to miRNA genes and some methods have been designed specifically to find the promoter regions of miRNA genes. The transcription factors (TFs), miRNA, and the targeted genes can form complex regulatory networks in the cells that can be divided into circuits. The miRNA-mediated feed-forward loop (FFL) is the most commonly encountered circuit. The miRNAs can also regulate targeted genes in a collaborative way. Some tools to study these circuits are discussed in this chapter as are some examples of their use.

Key words

Transcription factor miRNA Promoter Circuit Feed forward loop Synergistic 


  1. 1.
    Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500CrossRefPubMedGoogle Scholar
  2. 2.
    Rajewsky N (2006) MicroRNA target predictions in animals. Nat Genet 38:S8–S13CrossRefPubMedGoogle Scholar
  3. 3.
    Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V, Sundaresan V (2005) Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res 15(1):78–91CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Jiang P, Wu H, Wang W, Ma W, Sun X, Lu Z (2007) MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res 35(Suppl 2):W339–W344CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Qiu C, Wang J, Yao P, Wang E, Cui Q (2010) MicroRNA evolution in a human transcription factor and microRNA regulatory network. BMC Syst Biol 4(1):90CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sengupta D, Bandyopadhyay S (2011) Participation of microRNAs in human interactome: extraction of microRNA–microRNA regulations. Mol Biosyst 7(6):1966–1973CrossRefPubMedGoogle Scholar
  7. 7.
    Abeel T, Saeys Y, Bonnet E, Rouzé P, Van de Peer Y (2008) Generic eukaryotic core promoter prediction using structural features of DNA. Genome Res 18(2):310–323CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhou X, Ruan J, Wang G, Zhang W (2007) Characterization and identification of microRNA core promoters in four model species. PLoS Comput Biol 3(3):e37CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31(1):64–68CrossRefPubMedGoogle Scholar
  10. 10.
    Osella M, Bosia C, Corá D, Caselle M (2011) The role of incoherent microRNA-mediated feedforward loops in noise buffering. PLoS Comput Biol 7(3):e1001101CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yan Z, Shah PK, Amin SB, Samur MK, Huang N, Wang X, Misra V, Ji H, Gabuzda D, Li C (2012) Integrative analysis of gene and miRNA expression profiles with transcription factor–miRNA feed-forward loops identifies regulators in human cancers. Nucleic Acids Res 40(17):e135CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hamed M, Spaniol C, Nazarieh M, Helms V (2015) TFmiR: a web server for constructing and analyzing disease-specific transcription factor and miRNA co-regulatory networks. Nucleic Acids Res 43(W1):W283–W288CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Friard O, Re A, Taverna D, De Bortoli M, Corá D (2010) CircuitsDB: a database of mixed microRNA/transcription factor feed-forward regulatory circuits in human and mouse. BMC Bioinformatics 11(1):435CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Liu J, Ye X, Wu F-X (2013) Characterizing dynamic regulatory programs in mouse lung development and their potential association with tumourigenesis via miRNA-TF-mRNA circuits. BMC Syst Biol 7(Suppl 2):S11CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Meng Y, Huang F, Shi Q, Cao J, Chen D, Zhang J, Ni J, Wu P, Chen M (2009) Genome-wide survey of rice microRNAs and microRNA–target pairs in the root of a novel auxin-resistant mutant. Planta 230(5):883–898CrossRefPubMedGoogle Scholar
  16. 16.
    Yoon EK, Yang JH, Lim J, Kim SH, Kim S-K, Lee WS (2009) Auxin regulation of the microRNA390-dependent transacting small interfering RNA pathway in Arabidopsis lateral root development. Nucleic Acids Res 38(4):1382–1391CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lu L, Zhou L, Chen EZ, Sun K, Jiang P, Wang L, Su X, Sun H, Wang H (2012) A novel YY1-miR-1 regulatory circuit in skeletal myogenesis revealed by genome-wide prediction of YY1-miRNA network. PLoS One 7(2):e27596CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Forrest AR, Kanamori-Katayama M, Tomaru Y, Lassmann T, Ninomiya N, Takahashi Y, de Hoon MJ, Kubosaki A, Kaiho A, Suzuki M (2010) Induction of microRNAs, mir-155, mir-222, mir-424 and mir-503, promotes monocytic differentiation through combinatorial regulation. Leukemia 24(2):460–466CrossRefPubMedGoogle Scholar
  19. 19.
    Xu J, Li C-X, Li Y-S, Lv J-Y, Ma Y, Shao T-T, Xu L-D, Wang Y-Y, Du L, Zhang Y-P (2011) MiRNA–miRNA synergistic network: construction via co-regulating functional modules and disease miRNA topological features. Nucleic Acids Res 39(3):825–836CrossRefPubMedGoogle Scholar
  20. 20.
    Li Y, Qiu C, Tu J, Geng B, Yang J, Jiang T, Cui Q (2014) HMDD v2. 0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res 42(D1):D1070–D1074CrossRefPubMedGoogle Scholar
  21. 21.
    Lu M, Zhang Q, Deng M, Miao J, Guo Y, Gao W, Cui Q (2008) An analysis of human microRNA and disease associations. PLoS One 3(10):e3420CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.College of BioengineeringQilu University of TechnologyJinanPeople’s Republic of China
  2. 2.School of BioengineeringQilu University of TechnologyJinanPeople’s Republic of China
  3. 3.School of ComputingUniversity of South AlabamaMobileUSA

Personalised recommendations