Expression of MicroRNAs in Thyroid Carcinoma

  • Gaohong ZhuEmail author
  • Lijun Xie
  • Daniel Miller
Part of the Methods in Molecular Biology book series (MIMB, volume 1617)


MicroRNA (miRNA) are negative regulators of gene expression and subsequent protein production. This method of action translates into regulatory control over cellular processes, including development, signaling, metabolism, and apoptosis. A broad range of miRNA are shown to have abnormal expressions in thyroid cancers which could explain the pathology of tumor oncogenesis and disease progression. A review is conducted of the current research on miRNA dysregulation in thyroid cancers, including papillary thyroid carcinoma (PTC), follicular thyroid carcinoma (FTC), anaplastic thyroid cancer (ATC), and medullary thyroid carcinoma (MTC). Dysregulated miRNA and their associated regulatory pathways are identified and their oncogenic and pathological significance are discussed.

Key words

Thyroid cancer MicroRNA Gene expression 


  1. 1.
    Kondo T, Ezzat S, Asa SL (2006) Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer 6:292–306CrossRefPubMedGoogle Scholar
  2. 2.
    Yau T, Lo CY, Epstein RJ et al (2008) Treatment outcomes in anaplastic thyroid carcinoma: survival improvement in young patients with localized disease treated by combination of surgery and radiotherapy. Ann Surg Oncol 15:2500–2505. doi: 10.1245/s10434-008-0005-0 CrossRefPubMedGoogle Scholar
  3. 3.
    Albores-Saavedra J, LiVolsi VA, Williams ED (1985) Medullary carcinoma. Semin Diagn Pathol 2:137–146PubMedGoogle Scholar
  4. 4.
    Visone R, Russo L, Pallante P et al (2007) MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocr Relat Cancer 14:791–798CrossRefPubMedGoogle Scholar
  5. 5.
    Chou CK, Chen RF, Chou FF et al (2010) miR-146b is highly expressed in adult papillary thyroid carcinomas with high risk features including extrathyroidal invasion and the BRAF(V600E) mutation. Thyroid 20:489–494. doi: 10.1089/thy.2009.0027 CrossRefPubMedGoogle Scholar
  6. 6.
    Weber F, Teresi RE, Broelsch CE et al (2006) A limited set of human MicroRNA is deregulated in follicular thyroid carcinoma. J Clin Endocrinol Metab 91:3584–3591. doi: 10.1210/jc.2006-0693 CrossRefPubMedGoogle Scholar
  7. 7.
    Nikiforova MN, Nikiforov YE (2009) Molecular diagnostics and predictors in thyroid cancer. Thyroid 19:1351–1361. doi: 10.1089/thy.2009.0240 CrossRefPubMedGoogle Scholar
  8. 8.
    Nikiforova MN, Tseng GC, Steward D et al (2008) MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab 93:1600–1608. doi: 10.1210/jc.2007-2696 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Mian C, Pennelli G, Fassan M et al (2012) MicroRNA profiles in familial and sporadic medullary thyroid carcinoma: preliminary relationships with RET status and outcome. Thyroid 22:890–896. doi: 10.1089/thy.2012.0045 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Huang Y, Shen XJ, Zou Q, Zhao QL (2010) Biological functions of microRNAs. Bioorg Khim 36:747–752PubMedGoogle Scholar
  11. 11.
    Huang Y, Shen XJ, Zou Q et al (2011) Biological functions of microRNAs: a review. J Physiol Biochem 67:129–139. doi: 10.1007/s13105-010-0050-6 CrossRefPubMedGoogle Scholar
  12. 12.
    Lee EJ, Gusev Y, Jiang J et al (2007) Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 120:1046–1054. doi: 10.1002/ijc.22394 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fabbri M, Ivan M, Cimmino A et al (2007) Regulatory mechanisms of microRNAs involvement in cancer. Expert Opin Biol Ther 7:1009–1019. doi: 10.1517/14712598.7.7.1009 CrossRefPubMedGoogle Scholar
  14. 14.
    van Kouwenhove M, Kedde M, Agami R (2011) MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer 11:644–656. doi: 10.1038/nrc3107 CrossRefPubMedGoogle Scholar
  15. 15.
    Gorgone S, Campenni A, Calbo E et al (2009) Differentiated thyroid cancers. G Chir 30:26–29PubMedGoogle Scholar
  16. 16.
    Menon MP, Khan A (2009) Micro-RNAs in thyroid neoplasms: molecular, diagnostic and therapeutic implications. J Clin Pathol 62:978–985. doi: 10.1136/jcp.2008.063909 CrossRefPubMedGoogle Scholar
  17. 17.
    Yang Z, Yuan Z, Fan Y et al (2013) Integrated analyses of microRNA and mRNA expression profiles in aggressive papillary thyroid carcinoma. Mol Med Rep 8:1353–1358. doi: 10.3892/mmr.2013.1699 PubMedGoogle Scholar
  18. 18.
    Labbaye C, Spinello I, Quaranta MT et al (2008) A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis. Nat Cell Biol 10:788–801. doi: 10.1038/ncb1741
  19. 19.
    Visone R, Pallante P, Vecchione A et al (2007) Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene 26:7590–7595CrossRefPubMedGoogle Scholar
  20. 20.
    Garofalo M, Quintavalle C, Di Leva G et al (2008) MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene 27:3845–3855. doi: 10.1038/onc.2008.6 CrossRefPubMedGoogle Scholar
  21. 21.
    Cerutti J, Trapasso F, Battaglia C et al (1996) Block of c-myc expression by antisense oligonucleotides inhibits proliferation of human thyroid carcinoma cell lines. Clin Cancer Res 2:119–126PubMedGoogle Scholar
  22. 22.
    Pallante P, Visone R, Ferracin M et al (2006) MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer 13:497–508. doi: 10.1677/erc.1.01209 CrossRefPubMedGoogle Scholar
  23. 23.
    Lv M, Zhang X, Li M et al (2013) miR-26a and its target CKS2 modulate cell growth and tumorigenesis of papillary thyroid carcinoma. PLoS One 8:e67591. doi: 10.1371/journal.pone.0067591 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Peng Y, Li C, Luo DC et al (2014) Expression profile and clinical significance of microRNAs in papillary thyroid carcinoma. Molecules 19:11586–11599. doi: 10.3390/molecules190811586 CrossRefPubMedGoogle Scholar
  25. 25.
    Hardin H, Guo Z, Shan W et al (2014) The roles of the epithelial-mesenchymal transition marker PRRX1 and miR-146b-5p in papillary thyroid carcinoma progression. Am J Pathol 184:2342–2354. doi: 10.1016/j.ajpath.2014.04.011 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cantara S, Pilli T, Sebastiani G et al (2014) Circulating miRNA95 and miRNA190 are sensitive markers for the differential diagnosis of thyroid nodules in a Caucasian population. J Clin Endocrinol Metab 99:4190–4198. doi: 10.1210/jc.2014-1923 CrossRefPubMedGoogle Scholar
  27. 27.
    Igci YZ, Ozkaya M, Korkmaz H et al (2015) Expression levels of miR-30a-5p in papillary thyroid carcinoma: a comparison between serum and fine needle aspiration biopsy samples. Genet Test Mol Biomarkers 19:418–423CrossRefPubMedGoogle Scholar
  28. 28.
    Voskas D, Ling LS, Woodgett JR (2014) Signals controlling un-differentiated states in embryonic stem and cancer cells: role of the phosphatidylinositol 3′ kinase pathway. J Cell Physiol 229:1312–1322. doi: 10.1002/jcp.24603 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Geraldo MV, Fuziwara CS, Friguglieti CU et al (2012) MicroRNAs miR-146-5p and let-7f as prognostic tools for aggressive papillary thyroid carcinoma: a case report. Arq Bras Endocrinol Metabol 56:552–557CrossRefPubMedGoogle Scholar
  30. 30.
    Yu S, Liu Y, Wang J et al (2012) Circulating microRNA profiles as potential biomarkers for diagnosis of papillary thyroid carcinoma. J Clin Endocrinol Metab 97:2084–2092. doi: 10.1210/jc.2011-3059 CrossRefPubMedGoogle Scholar
  31. 31.
    Huang Y, Liao D, Pan L et al (2013) Expressions of miRNAs in papillary thyroid carcinoma and their associations with the BRAFV600E mutation. Eur J Endocrinol 168:675–681. doi: 10.1530/EJE-12-1029 CrossRefPubMedGoogle Scholar
  32. 32.
    Huang YH, Lin YH, Chi HC et al (2013) Thyroid hormone regulation of miR-21 enhances migration and invasion of hepatoma. Cancer Res 73:2505–2517. doi: 10.1158/0008-5472.CAN-12-2218 CrossRefPubMedGoogle Scholar
  33. 33.
    Deng X, Wu B, Xiao K et al (2015) MiR-146b-5p promotes metastasis and induces epithelial-mesenchymal transition in thyroid cancer by targeting ZNRF3. Cell Physiol Biochem 35:71–82. doi: 10.1159/000369676 CrossRefPubMedGoogle Scholar
  34. 34.
    Geraldo MV, Kimura ET (2015) Integrated analysis of thyroid cancer public datasets reveals role of post-transcriptional regulation on tumor progression by targeting of immune system mediators. PLoS One 10:e0141726. doi: 10.1371/journal.pone.0141726 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lee YS, Lim YS, Lee JC et al (2015) Differential expression levels of plasma-derived miR-146b and miR-155 in papillary thyroid cancer. Oral Oncol 51:77–83. doi: 10.1016/j.oraloncology.2014.10.006 CrossRefPubMedGoogle Scholar
  36. 36.
    Wang C, Lu S, Jiang J et al (2014) Hsa-microRNA-101 suppresses migration and invasion by targeting Rac1 in thyroid cancer cells. Oncol Lett 8:1815–1821. doi: 10.3892/ol.2014.2361 PubMedPubMedCentralGoogle Scholar
  37. 37.
    Zhu H, Fang J, Zhang J et al (2014) miR-182 targets CHL1 and controls tumor growth and invasion in papillary thyroid carcinoma. Biochem Biophys Res Commun 450:857–862. doi: 10.1016/j.bbrc.2014.06.073 CrossRefPubMedGoogle Scholar
  38. 38.
    Liu L, Wang J, Li X et al (2015) MiR-204-5p suppresses cell proliferation by inhibiting IGFBP5 in papillary thyroid carcinoma. Biochem Biophys Res Commun 457:621–626. doi: 10.1016/j.bbrc.2015.01.037 CrossRefPubMedGoogle Scholar
  39. 39.
    Li R, Liu J, Li Q et al (2015) miR-29a suppresses growth and metastasis in papillary thyroid carcinoma by targeting AKT3. Tumour Biol 37:3987–3996. doi: 10.1007/s13277-015-4165-9 CrossRefPubMedGoogle Scholar
  40. 40.
    Minna E, Romeo P, De Cecco L et al (2014) miR-199a-3p displays tumor suppressor functions in papillary thyroid carcinoma. Oncotarget 5:2513–2528. doi: 10.18632/oncotarget.1830 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Pallante P, Visone R, Croce CM, Fusco A (2010) Deregulation of microRNA expression in follicular cell-derived human thyroid carcinomas. Endocr Relat Cancer 17:F91–F104. doi: 10.1677/ERC-09-0217 CrossRefPubMedGoogle Scholar
  42. 42.
    Takizawa T (2013) The miR-221/222 cluster, miR-10b and miR-92a are highly upregulated in metastatic minimally invasive follicular thyroid carcinoma. Int J Oncol. doi: 10.3892/ijo.2013.1879 PubMedPubMedCentralGoogle Scholar
  43. 43.
    Rippe V, Dittberner L, Lorenz VN et al (2010) The two stem cell microRNA gene clusters C19MC and miR-371-3 are activated by specific chromosomal rearrangements in a subgroup of thyroid adenomas. PLoS One 5:e9485. doi: 10.1371/journal.pone.0009485 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Colamaio M, Puca F, Ragozzino E et al (2015) miR-142-3p down-regulation contributes to thyroid follicular tumorigenesis by targeting ASH1L and MLL1. J Clin Endocrinol Metab 100:E59–E69. doi: 10.1210/jc.2014-2280 CrossRefPubMedGoogle Scholar
  45. 45.
    Rossing M, Borup R, Henao R et al (2012) Down-regulation of microRNAs controlling tumourigenic factors in follicular thyroid carcinoma. J Mol Endocrinol 48:11–23. doi: 10.1530/JME-11-0039 CrossRefPubMedGoogle Scholar
  46. 46.
    Colamaio M, Borbone E, Russo L et al (2011) miR-191 down-regulation plays a role in thyroid follicular tumors through CDK6 targeting. J Clin Endocrinol Metab 96:E1915–E1924. doi: 10.1210/jc.2011-0408 CrossRefPubMedGoogle Scholar
  47. 47.
    Carvalheira G, Nozima BH, Cerutti JM (2015) microRNA-106b-mediated down-regulation of C1orf24 expression induces apoptosis and suppresses invasion of thyroid cancer. Oncotarget 6:28357–28370. doi: 10.18632/oncotarget.4947 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Wojtas B, Ferraz C, Stokowy T et al (2014) Differential miRNA expression defines migration and reduced apoptosis in follicular thyroid carcinomas. Mol Cell Endocrinol 388:1–9. doi: 10.1016/j.mce.2014.02.011 CrossRefPubMedGoogle Scholar
  49. 49.
    Roncati L, Pignatti E, Vighi E et al (2014) Pre-miR146a expression in follicular carcinomas of the thyroid. Pathologica 106:58–60PubMedGoogle Scholar
  50. 50.
    Braun J, Hoang-Vu C, Dralle H, Huttelmaier S (2010) Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas. Oncogene 29:4237–4244. doi: 10.1038/onc.2010.169 CrossRefPubMedGoogle Scholar
  51. 51.
    Schwertheim S, Sheu SY, Worm K et al (2009) Analysis of deregulated miRNAs is helpful to distinguish poorly differentiated thyroid carcinoma from papillary thyroid carcinoma. Horm Metab Res 41:475–481. doi: 10.1055/s-0029-1215593 CrossRefPubMedGoogle Scholar
  52. 52.
    Mitomo S, Maesawa C, Ogasawara S et al (2008) Downregulation of miR-138 is associated with overexpression of human telomerase reverse transcriptase protein in human anaplastic thyroid carcinoma cell lines. Cancer Sci 99:280–286. doi: 10.1111/j.1349-7006.2007.00666.x CrossRefPubMedGoogle Scholar
  53. 53.
    Takakura S, Mitsutake N, Nakashima M et al (2008) Oncogenic role of miR-17-92 cluster in anaplastic thyroid cancer cells. Cancer Sci 99:1147–1154. doi: 10.1111/j.1349-7006.2008.00800.x CrossRefPubMedGoogle Scholar
  54. 54.
    Zhang Y, Yang WQ, Zhu H et al (2014) Regulation of autophagy by miR-30d impacts sensitivity of anaplastic thyroid carcinoma to cisplatin. Biochem Pharmacol 87:562–570. doi: 10.1016/j.bcp.2013.12.004 CrossRefPubMedGoogle Scholar
  55. 55.
    Vergoulis T, Vlachos IS, Alexiou P et al (2012) TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res 40:D222–D229. doi: 10.1093/nar/gkr1161 CrossRefPubMedGoogle Scholar
  56. 56.
    Bhaumik D, Scott GK, Schokrpur S et al (2008) Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene 27:5643–5647. doi: 10.1038/onc.2008.171 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Jazdzewski K, Boguslawska J, Jendrzejewski J et al (2011) Thyroid hormone receptor beta (THRB) is a major target gene for microRNAs deregulated in papillary thyroid carcinoma (PTC). J Clin Endocrinol Metab 96:E546–E553. doi: 10.1210/jc.2010-1594 CrossRefPubMedGoogle Scholar
  58. 58.
    Xiong Y, Zhang L, Kebebew E (2014) MiR-20a is upregulated in anaplastic thyroid cancer and targets LIMK1. PLoS One 9:e96103. doi: 10.1371/journal.pone.0096103 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Zhang Z, Liu ZB, Ren WM et al (2012) The miR-200 family regulates the epithelial-mesenchymal transition induced by EGF/EGFR in anaplastic thyroid cancer cells. Int J Mol Med 30:856–862. doi: 10.3892/ijmm.2012.1059
  60. 60.
    Borbone E, Troncone G, Ferraro A et al (2011) Enhancer of zeste homolog 2 overexpression has a role in the development of anaplastic thyroid carcinomas. J Clin Endocrinol Metab 96:1029–1038. doi: 10.1210/jc.2010-1784 CrossRefPubMedGoogle Scholar
  61. 61.
    Schwertheim S, Worm K, Schmid KW, Sheu-Grabellus SY (2014) Valproic acid downregulates NF-kappaB p50 activity and IRAK-1 in a progressive thyroid carcinoma cell line. Horm Metab Res 46:181–186. doi: 10.1055/s-0034-1367043 CrossRefPubMedGoogle Scholar
  62. 62.
    Takamizawa J, Konishi H, Yanagisawa K et al (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756. doi: 10.1158/0008-5472.CAN-04-0637 CrossRefPubMedGoogle Scholar
  63. 63.
    Cui SY, Huang JY, Chen YT et al (2013) Let-7c governs the acquisition of chemo- or radioresistance and epithelial-to-mesenchymal transition phenotypes in docetaxel-resistant lung adenocarcinoma. Mol Cancer Res 11:699–713. doi: 10.1158/1541-7786.MCR-13-0019-T CrossRefPubMedGoogle Scholar
  64. 64.
    Esposito F, Tornincasa M, Pallante P et al (2012) Down-regulation of the miR-25 and miR-30d contributes to the development of anaplastic thyroid carcinoma targeting the polycomb protein EZH2. J Clin Endocrinol Metab 97:E710–E718. doi: 10.1210/jc.2011-3068
  65. 65.
    Fuziwara CS, Kimura ET (2014) MicroRNA deregulation in anaplastic thyroid cancer biology. Int J Endocrinol 2014:1–8. doi: 10.1155/2014/743450 CrossRefGoogle Scholar
  66. 66.
    Wu D, Ding J, Wang L et al (2013) microRNA-125b inhibits cell migration and invasion by targeting matrix metallopeptidase 13 in bladder cancer. Oncol Lett 5:829–834. doi: 10.3892/ol.2013.1123 PubMedPubMedCentralGoogle Scholar
  67. 67.
    Kota J, Chivukula RR, O’Donnell KA et al (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137:1005–1017. doi: 10.1016/j.cell.2009.04.021 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Zhu H, Wu H, Liu X et al (2009) Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy 5:816–823CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Boufraqech M, Nilubol N, Zhang L et al (2015) miR30a inhibits LOX expression and anaplastic thyroid cancer progression. Cancer Res 75:367–377. doi: 10.1158/0008-5472.CAN-14-2304 CrossRefPubMedGoogle Scholar
  70. 70.
    Shao M, Geng Y, Lu P et al (2015) miR-4295 promotes cell proliferation and invasion in anaplastic thyroid carcinoma via CDKN1A. Biochem Biophys Res Commun 464:1309–1313. doi: 10.1016/j.bbrc.2015.07.128 CrossRefPubMedGoogle Scholar
  71. 71.
    Geraldo MV, Yamashita AS, Kimura ET (2012) MicroRNA miR-146b-5p regulates signal transduction of TGF-β by repressing S...: Journal & E-Book List. Oncogene 31:1910–1922CrossRefPubMedGoogle Scholar
  72. 72.
    Carraro G, El-Hashash A, Guidolin D et al (2009) miR-17 family of microRNAs controls FGF10-mediated embryonic lung epithelial branching morphogenesis through MAPK14 and STAT3 regulation of E-cadherin distribution. Dev Biol 333:238–250. doi: 10.1016/j.ydbio.2009.06.020 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Hebrant A, Floor S, Saiselet M et al (2014) miRNA expression in anaplastic thyroid carcinomas. PLoS One 9:e103871. doi: 10.1371/journal.pone.0103871 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Arancio W, Carina V, Pizzolanti G et al (2015) Anaplastic thyroid carcinoma: a ceRNA analysis pointed to a crosstalk between SOX2, TP53, and microRNA biogenesis. Int J Endocrinol 2015:439370. doi: 10.1155/2015/439370 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Yu Z, Pestell TG, Lisanti MP, Pestell RG (2012) Cancer stem cells. Int J Biochem Cell Biol 44:2144–2151. doi: 10.1016/j.biocel.2012.08.022 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Hudson J, Duncavage E, Tamburrino A et al (2013) Overexpression of miR-10a and miR-375 and downregulation of YAP1 in medullary thyroid carcinoma. Exp Mol Pathol 95:62–67. doi: 10.1016/j.yexmp.2013.05.001 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Duan L, Hao X, Liu Z et al (2014) MiR-129-5p is down-regulated and involved in the growth, apoptosis and migration of medullary thyroid carcinoma cells through targeting RET. FEBS Lett 588:1644–1651. doi: 10.1016/j.febslet.2014.03.002 CrossRefPubMedGoogle Scholar
  78. 78.
    Abraham D, Jackson N, Gundara JS et al (2011) MicroRNA profiling of sporadic and hereditary medullary thyroid cancer identifies predictors of nodal metastasis, prognosis, and potential therapeutic targets. Clin Cancer Res 17:4772–4781. doi: 10.1158/1078-0432.CCR-11-0242 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Nuclear MedicineFirst Affiliated Hospital of Kunming Medical UniversityKunmingChina
  2. 2.School of ComputingUniversity of South AlabamaMobileUSA

Personalised recommendations