Involvement of MicroRNAs in Diabetes and Its Complications

  • Bin WuEmail author
  • Daniel Miller
Part of the Methods in Molecular Biology book series (MIMB, volume 1617)


Diabetes is a severe condition worldwide. It is characterized by chronic hyperglycemia and is caused by defects in insulin production, secretion, and action. Both genetic and environmental factors contribute to the development of type 1 and type 2 diabetes. The pathogenesis of diabetes is complex and the underlying molecular mechanisms are only partially understood. MicroRNAs (miRNAs) play a fundamental role in diabetes and its complications. This chapter focuses on the dysregulation of miRNAs involved in the regulation of pancreatic islet insulin production and secretion as well as action and signaling in peripheral tissues. The roles of miRNAs in the development of diabetic complications are also discussed. Modulating miRNA expression, by either upregulation or inhibition, holds a promise as a strategy for treating this metabolic disease.

Key words

MicroRNA Diabetes Insulin Insulin resistance Glucose homeostasis Diabetic complications 


  1. 1.
    Inzucchi SE, Sherwin RS (2011) Type 1 diabetes mellitus, Cecil Med. 24th Ed Phila. Pa Saunders ElsevierGoogle Scholar
  2. 2.
    Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87(1):4–14CrossRefPubMedGoogle Scholar
  3. 3.
    Mokdad AH et al (Jan. 2003) Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA 289(1):76–79CrossRefPubMedGoogle Scholar
  4. 4.
    Cecil RLF, Goldman L, Schafer AI (2012) Goldman’s cecil medicine, expert consult premium edition—enhanced online features and print, single volume, 24: Goldman’s cecil medicine. Elsevier Health Sciences, AmsterdamGoogle Scholar
  5. 5.
    Dokken BB (2008) The pathophysiology of cardiovascular disease and diabetes: beyond blood pressure and lipids. Diabetes Spectr 21(3):160–165CrossRefGoogle Scholar
  6. 6.
    Kolfschoten IGM, Roggli E, Nesca V, Regazzi R (2009) Role and therapeutic potential of microRNAs in diabetes. Diabetes Obes Metab 11:118–129CrossRefPubMedGoogle Scholar
  7. 7.
    John B, Sander C, Marks DS (2006) Prediction of human microRNA targets. Methods Mol Biol 342:101–113. Clifton, NJPubMedGoogle Scholar
  8. 8.
    Guay C, Roggli E, Nesca V, Jacovetti C, Regazzi R (2011) Diabetes mellitus, a microRNA-related disease? Transl Res 157(4):253–264CrossRefPubMedGoogle Scholar
  9. 9.
    Poy MN et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432(7014):226–230CrossRefPubMedGoogle Scholar
  10. 10.
    Avnit-Sagi T, Kantorovich L, Kredo-Russo S, Hornstein E, Walker MD (2009) The promoter of the pri-miR-375 gene directs expression selectively to the endocrine pancreas. PLoS One 4(4):e5033CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Joglekar MV, Joglekar VM, Hardikar AA (2009) Expression of islet-specific microRNAs during human pancreatic development. Gene Expr Patterns 9(2):109–113CrossRefPubMedGoogle Scholar
  12. 12.
    Poy MN et al (2009) miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci U S A 106(14):5813–5818CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Li Y et al (2010) miR-375 enhances palmitate-induced lipoapoptosis in insulin-secreting NIT-1 cells by repressing myotrophin (V1) protein expression. Int J Clin Exp Pathol 3(3):254–264PubMedPubMedCentralGoogle Scholar
  14. 14.
    El Ouaamari A, Baroukh N, Martens GA, Lebrun P, Pipeleers D, van Obberghen E (2008) miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes 57(10):2708–2717CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RHA (2007) Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol 5(8):e203CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lynn FC, Skewes-Cox P, Kosaka Y, McManus MT, Harfe BD, German MS (2007) MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 56(12):2938–2945CrossRefPubMedGoogle Scholar
  17. 17.
    Baroukh N et al (2007) MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J Biol Chem 282(27):19575–19588CrossRefGoogle Scholar
  18. 18.
    Joglekar MV, Parekh VS, Mehta S, Bhonde RR, Hardikar AA (2007) MicroRNA profiling of developing and regenerating pancreas reveal post-transcriptional regulation of neurogenin3. Dev Biol 311(2):603–612CrossRefPubMedGoogle Scholar
  19. 19.
    Krichevsky AM, Sonntag K-C, Isacson O, Kosik KS (2006) Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24(4):857–864CrossRefPubMedGoogle Scholar
  20. 20.
    Conaco C, Otto S, Han J-J, Mandel G (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci U S A 103(7):2422–2427CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Lovis P, Gattesco S, Regazzi R (2008) Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem 389(3):305–312CrossRefPubMedGoogle Scholar
  22. 22.
    Cuellar TL, McManus MT (2005) MicroRNAs and endocrine biology. J Endocrinol 187(3):327–332CrossRefPubMedGoogle Scholar
  23. 23.
    Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, Regazzi R (2006) MicroRNA-9 controls the expression of granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem 281(37):26932–26942CrossRefPubMedGoogle Scholar
  24. 24.
    Ramachandran D, Roy U, Garg S, Ghosh S, Pathak S, Kolthur-Seetharam U (2011) Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic β-islets. FEBS J 278(7):1167–1174CrossRefPubMedGoogle Scholar
  25. 25.
    Sun L-L, Jiang B-G, Li W-T, Zou J-J, Shi Y-Q, Liu Z-M (2011) MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diabetes Res Clin Pract 91(1):94–100CrossRefPubMedGoogle Scholar
  26. 26.
    Roggli E et al (2010) Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 59(4):978–986CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lovis P et al (2008) Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes 57(10):2728–2736CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ortega FJ et al (2010) MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PloS ONE 5(2):e9022CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Stump CS, Henriksen EJ, Wei Y, Sowers JR (2006) The metabolic syndrome: role of skeletal muscle metabolism. Ann Med 38(6):389–402CrossRefPubMedGoogle Scholar
  30. 30.
    Granjon A et al (2009) The microRNA signature in response to insulin reveals its implication in the transcriptional action of insulin in human skeletal muscle and the role of a sterol regulatory element-binding protein-1c/myocyte enhancer factor 2C pathway. Diabetes 58(11):2555–2564CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    He A, Zhu L, Gupta N, Chang Y, Fang F (2007) Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Mol Endocrinol 21(11):2785–2794CrossRefPubMedGoogle Scholar
  32. 32.
    Gallagher IJ et al (2010) Integration of microRNA changes in vivo identifies novel molecular features of muscle insulin resistance in type 2 diabetes. Genome Med 2(2):9CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Yu X-Y et al (2008) Glucose induces apoptosis of cardiomyocytes via microRNA-1 and IGF-1. Biochem Biophys Res Commun 376(3):548–552CrossRefPubMedGoogle Scholar
  34. 34.
    Elia L et al (Dec. 2009) Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation 120(23):2377–2385CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Sandhu MS, Heald AH, Gibson JM, Cruickshank JK, Dunger DB, Wareham NJ (2002) Circulating concentrations of insulin-like growth factor-I and development of glucose intolerance: a prospective observational study. Lancet 359(9319):1740–1745. Lond EnglCrossRefPubMedGoogle Scholar
  36. 36.
    Horie T et al (2009) MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes. Biochem Biophys Res Commun 389(2):315–320CrossRefPubMedGoogle Scholar
  37. 37.
    Zampetaki A et al (2010) Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 107(6):810–817CrossRefPubMedGoogle Scholar
  38. 38.
    Huang B et al (2009) MicroRNA expression profiling in diabetic GK rat model. Acta Biochim Biophys Sin 41(6):472–477CrossRefPubMedGoogle Scholar
  39. 39.
    Kiriakidou M et al (2004) A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18(10):1165–1178CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Niu W et al (2003) Maturation of the regulation of GLUT4 activity by p38 MAPK during L6 cell myogenesis. J Biol Chem 278(20):17953–17962CrossRefPubMedGoogle Scholar
  41. 41.
    Karolina DS et al (2011) MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PloS One 6(8):e22839CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Samuel VT, Shulman GI (2012) Mechanisms for insulin resistance: common threads and missing links. Cell 148(5):852–871CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Raghow R, Yellaturu C, Deng X, Park EA, Elam MB (2008) SREBPs: the crossroads of physiological and pathological lipid homeostasis. Trends Endocrinol Metab 19(2):65–73CrossRefPubMedGoogle Scholar
  44. 44.
    Sacco J, Adeli K (2012) MicroRNAs: emerging roles in lipid and lipoprotein metabolism. Curr Opin Lipidol 23(3):220–225CrossRefPubMedGoogle Scholar
  45. 45.
    Rayner KJ et al (2010) MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328(5985):1570–1573CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Gerin I et al (2010) Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. J Biol Chem 285(44):33652–33661CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Horie T et al (2010) MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc Natl Acad Sci U S A 107(40):17321–17326CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Wijesekara N et al (2012) miR-33a modulates ABCA1 expression, cholesterol accumulation, and insulin secretion in pancreatic islets. Diabetes 61(3):653–658CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444(7121):840–846CrossRefPubMedGoogle Scholar
  50. 50.
    Xie H, Lim B, Lodish HF (May 2009) MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 58(5):1050–1057CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Esau C et al (2004) MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 279(50):52361–52365CrossRefPubMedGoogle Scholar
  52. 52.
    Kajimoto K, Naraba H, Iwai N (2006) MicroRNA and 3T3-L1 pre-adipocyte differentiation. RNA 12(9):1626–1632. N. Y. NCrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Xu P, Vernooy SY, Guo M, Hay BA (2003) The drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 13(9):790–795CrossRefPubMedGoogle Scholar
  54. 54.
    Teleman AA, Cohen SM (2006) Drosophila lacking microRNA miR-278 are defective in energy homeostasis. Genes Dev 20(4):417–422CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Adler S (2004) Diabetic nephropathy: linking histology, cell biology, and genetics. Kidney Int 66(5):2095–2106CrossRefPubMedGoogle Scholar
  56. 56.
    Krupa A, Jenkins R, Luo DD, Lewis A, Phillips A, Fraser D (2010) Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J Am Soc Nephrol 21(3):438–447CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Kato M et al (2007) MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-β-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A 104(9):3432–3437CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Putta S, Lanting L, Sun G, Lawson G, Kato M, Natarajan R (2012) Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J Am Soc Nephrol 23(3):458–469CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Chung ACK, Huang XR, Meng X, Lan HY (2010) miR-192 mediates TGF-beta/Smad3-driven renal fibrosis. J Am Soc Nephrol 21(8):1317–1325CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Du B et al (2010) High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells. FEBS Lett 584(4):811–816CrossRefPubMedGoogle Scholar
  61. 61.
    Wang Q et al (2008) MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J 22(12):4126–4135. Off Publ Fed Am Soc Exp BiolCrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Schena FP, Gesualdo L (2005) Pathogenetic mechanisms of diabetic nephropathy. J Am Soc Nephrol 16(3 suppl 1):S30–S33CrossRefPubMedGoogle Scholar
  63. 63.
    van Hoeven KH, Factor SM (1990) A comparison of the pathological spectrum of hypertensive, diabetic, and hypertensive-diabetic heart disease. Circulation 82(3):848–855CrossRefPubMedGoogle Scholar
  64. 64.
    Tang X, Tang G, Özcan S (2008) Role of MicroRNAs in diabetes. Biochim Biophys Acta 1779(11):697–701CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Zhang Y et al (2007) Ionic mechanisms underlying abnormal QT prolongation and the associated arrhythmias in diabetic rabbits: a role of rapid delayed rectifier K+ current. Cell Physiol Biochem 19(5–6):225–238. Int J Exp Cell Physiol Biochem PharmacolCrossRefPubMedGoogle Scholar
  66. 66.
    Carè A et al (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13(5):613–618CrossRefPubMedGoogle Scholar
  67. 67.
    Collins KK, Van Hare GF (2006) Advances in congenital long QT syndrome. Curr Opin Pediatr 18(5):497–502CrossRefPubMedGoogle Scholar
  68. 68.
    Mizusawa Y, Horie M, Wilde AAM (2014) Genetic and clinical advances in congenital long QT syndrome. Circ J 78(12):2827–2833CrossRefPubMedGoogle Scholar
  69. 69.
    Paulussen A et al (2000) Analysis of the human KCNH2(HERG) gene: identification and characterization of a novel mutation Y667X associated with long QT syndrome and a non-pathological 9 bp insertion. Hum Mutat 15(5):483CrossRefPubMedGoogle Scholar
  70. 70.
    Shan H et al (2013) Upregulation of microRNA-1 and microRNA-133 contributes to arsenic-induced cardiac electrical remodeling. Int J Cardiol 167(6):2798–2805CrossRefPubMedGoogle Scholar
  71. 71.
    Xiao J et al (2007) MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. J Biol Chem 282(17):12363–12367CrossRefPubMedGoogle Scholar
  72. 72.
    Xiao J et al (2011) MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. J Biol Chem 286(32):28656–28656CrossRefGoogle Scholar
  73. 73.
    Shen E, Diao X, Wang X, Chen R, Hu B (2011) MicroRNAs involved in the mitogen-activated protein kinase cascades pathway during glucose-induced cardiomyocyte hypertrophy. Am J Pathol 179(2):639–650CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Lu H, Buchan RJ, Cook SA (2010) MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc Res 86(3):410–420CrossRefPubMedGoogle Scholar
  75. 75.
    Chen X et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997–1006CrossRefPubMedGoogle Scholar
  76. 76.
    Fichtlscherer S et al (2010) Circulating microRNAs in patients with coronary artery disease. Circ Res 107(5):677–684CrossRefPubMedGoogle Scholar
  77. 77.
    Wang C et al (2016) Increased serum microRNAs are closely associated with the presence of microvascular complications in type 2 diabetes mellitus. Sci Rep 6:20032CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Chien H-Y et al (2015) Circulating microRNA as a diagnostic marker in populations with type 2 diabetes mellitus and diabetic complications. J Chin Med Assoc 78(4):204–211CrossRefPubMedGoogle Scholar
  79. 79.
    Pescador N, Pérez-Barba M, Ibarra JM, Corbatón A, Martínez-Larrad MT, Serrano-Ríos M (2013) Serum circulating microRNA profiling for identification of potential type 2 diabetes and obesity biomarkers. PloS One 8(10):e77251CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Hutvágner G, Simard MJ, Mello CC, Zamore PD (2004) Sequence-specific inhibition of small RNA function. PLoS Biol 2(4):E98CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Krützfeldt J et al (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438(7068):685–689CrossRefPubMedGoogle Scholar
  82. 82.
    Lanford RE et al (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327(5962):198–201CrossRefPubMedGoogle Scholar
  83. 83.
    Frost RJA, Olson EN (2011) Control of glucose homeostasis and insulin sensitivity by the let-7 family of microRNAs. Proc Natl Acad Sci U S A 108(52):21075–21080CrossRefPubMedCentralGoogle Scholar
  84. 84.
    Merrins MJ, Stuenkel EL (2008) Kinetics of Rab27a-dependent actions on vesicle docking and priming in pancreatic beta-cells. J Physiol 586(22):5367–5381CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of EndocrinologyFirst Affiliated Hospital, Kunming Medical UniversityKunmingChina
  2. 2.School of ComputingUniversity of South AlabamaMobileUSA

Personalised recommendations