Skip to main content

Machine Learning Techniques in Exploring MicroRNA Gene Discovery, Targets, and Functions

  • Protocol
  • First Online:
Bioinformatics in MicroRNA Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1617))

Abstract

In recent years, the role of miRNAs in post-transcriptional gene regulation has provided new insights into the understanding of several types of cancers and neurological disorders. Although miRNA research has gathered great momentum since its discovery, traditional biological methods for finding miRNA genes and targets continue to remain a huge challenge due to the laborious tasks and extensive time involved. Fortunately, advances in computational methods have yielded considerable improvements in miRNA studies. This literature review briefly discusses recent machine learning-based techniques applied in the discovery of miRNAs, prediction of miRNA targets, and inference of miRNA functions. We also discuss the limitations of how these approaches have been elucidated in previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Winter J, Jung S, Keller S et al (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation . Nat Cell Biol 11:228–234. doi:10.1038/ncb0309-228

  2. Liu B, Li J, Cairns MJ (2014) Identifying miRNAs, targets and functions. Brief Bioinform 15:1–19. doi:10.1093/bib/bbs075

    Article  PubMed  Google Scholar 

  3. Kozomara A, Griffiths-Jones S (2014) MiRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:68–73. doi:10.1093/nar/gkt1181

    Article  Google Scholar 

  4. Mendes ND, Freitas AT, Sagot MF (2009) Survey and summary: current tools for the identification of miRNA genes and their targets. Nucleic Acids Res 37:2419–2433. doi:10.1093/nar/gkp145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li L, Xu J, Yang D et al (2010) Computational approaches for microRNA studies: a review. Mamm Genome 21:1–12. doi:10.1007/s00335-009-9241-2

    Article  CAS  PubMed  Google Scholar 

  6. Berezikov E, Cuppen E, Plasterk RH (2006) Approaches to microRNA discovery. Nat Genet 38(Suppl):S2–S7. doi:10.1038/ng1794

    Article  CAS  PubMed  Google Scholar 

  7. Xue C, Li F, He T et al (2005) Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinformatics 6:310

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gomes CPC, Cho JH, Hood L et al (2013) A review of computational tools in microRNA discovery. Front Genet 4:1–9. doi:10.3389/fgene.2013.00081

    Article  CAS  Google Scholar 

  9. Sewer A, Paul N, Landgraf P et al (2005) Identification of clustered microRNAs using an ab initio prediction method. BMC Bioinformatics 6:267

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hertel J, Stadler PF (2006) Hairpins in a Haystack: recognizing microRNA precursors in comparative genomics data. Bioinformatics 22:197–202. doi:10.1093/bioinformatics/btl257

    Article  Google Scholar 

  11. Washietl S, Hofacker IL, Stadler PF (2005) From the cover: fast and reliable prediction of noncoding RNAs. Proc Natl Acad Sci 102:2454–2459. doi:10.1073/pnas.0409169102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lindow M, Gorodkin J (2007) Principles and limitations of computational microRNA gene and target finding. DNA Cell Biol 26:339–351. doi:10.1089/dna.2006.0551

    Article  CAS  PubMed  Google Scholar 

  13. Ng KLS, Mishra SK (2007) De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures. Bioinformatics 23:1321–1330. doi:10.1093/bioinformatics/btm026

    Article  CAS  PubMed  Google Scholar 

  14. Batuwita R, Palade V (2009) microPred: effective classification of pre-miRNAs for human miRNA gene prediction. Bioinformatics 25:989–995. doi:10.1093/bioinformatics/btp107

    Article  CAS  PubMed  Google Scholar 

  15. Kleftogiannis D, Korfiati A, Theofilatos K et al (2013) Where we stand, where we are moving: surveying computational techniques for identifying miRNA genes and uncovering their regulatory role. J Biomed Inform 46:563–573. doi:10.1016/j.jbi.2013.02.002

    Article  PubMed  Google Scholar 

  16. Nam JW, Shin KR, Han J et al (2005) Human microRNA prediction through a probabilistic co-learning model of sequence and structure. Nucleic Acids Res 33:3570–3581. doi:10.1093/nar/gki668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Terai G, Komori T, Asai K, Kin T (2007) miRRim: a novel system to find conserved miRNAs with high sensitivity and specificity. RNA 13:2081–2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kadri S, Hinman V, Benos PV (2009) HHMMiR: efficient de novo prediction of microRNAs using hierarchical hidden Markov models. BMC Bioinformatics 10:S35

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yousef M, Nebozhyn M, Shatkay H et al (2006) Combining multi-species genomic data for microRNA identification using a Naïve Bayes classifier. Bioinformatics 22:1325–1334. doi:10.1093/bioinformatics/btl094

    Article  CAS  PubMed  Google Scholar 

  20. Chang DT-H, Wang C-C, Chen J-W (2008) Using a kernel density estimation based classifier to predict species-specific microRNA precursors. BMC Bioinformatics 9(Suppl 12):S2. doi:10.1186/1471-2105-9-S12-S2

    Article  PubMed  PubMed Central  Google Scholar 

  21. Stark A, Brennecke J, Russell RB, Cohen SM (2003) Identification of Drosophila microRNA targets. PLoS Biol 1(3):E60

    Article  PubMed  PubMed Central  Google Scholar 

  22. Eddy SR (1996) Hidden Markov models. Curr Opin Struct Biol 6:361–365. S0959-440X(96)80056-X [pii]

    Article  CAS  PubMed  Google Scholar 

  23. Enright AJ, John B, Gaul U et al (2003) MicroRNA targets in Drosophila. Genome Biol 5:R1

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lewis BP, Shih IH, Jones-Rhoades MW et al (2003) Prediction of mammalian microrna targets. Cell 115:787–798

    Article  CAS  PubMed  Google Scholar 

  25. Min H, Yoon S (2010) Got target? Computational methods for microRNA target prediction and their extension. Exp Mol Med 42:233–244. doi:10.3858/emm.2010.42.4.032

  26. Kiriakidou M, Nelson PT, Kouranov A et al (2004) A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18:1165–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maziere P, Enright AJ (2007) Prediction of microRNA targets. Drug Discov Today 12:452–458. doi:10.1016/j.drudis.2007.04.002

    Article  CAS  PubMed  Google Scholar 

  28. Krek A, Grün D, Poy MN et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500

    Article  CAS  PubMed  Google Scholar 

  29. Thadani R, Tammi MT (2006) MicroTar: predicting microRNA targets from RNA duplexes. BMC Bioinformatics 7(Suppl 5):S20. doi:10.1186/1471-2105-7-S5-S20

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hausser J, Berninger P, Rodak C et al (2009) MirZ: an integrated microRNA expression atlas and target prediction resource. Nucleic Acids Res 37:266–272. doi:10.1093/nar/gkp412

  31. Huang JC, Babak T, Corson TW et al (2007) Using expression profiling data to identify human microRNA targets. Nat Methods 4:1045–1049. doi:10.1038/nmeth1130

    Article  CAS  PubMed  Google Scholar 

  32. Chandra V, Girijadevi R, Nair AS et al (2010) MTar: a computational microRNA target prediction architecture for human transcriptome. BMC Bioinformatics 11(Suppl 1):S2. doi:10.1186/1471-2105-11-S1-S2

  33. Kim S-K, Nam J-W, Rhee J-K et al (2006) miTarget: microRNA target gene prediction using a support vector machine. BMC Bioinformatics 7:411. doi:10.1186/1471-2105-7-411

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bandyopadhyay S, Mitra R (2009) TargetMiner: MicroRNA target prediction with systematic identification of tissue-specific negative examples. Bioinformatics 25:2625–2631. doi:10.1093/bioinformatics/btp503

  35. Mitra R, Bandyopadhyay S (2011) MultiMiTar: a novel multi objective optimization based miRNA-target prediction method. PLoS One 6(9):e24583. doi:10.1371/journal.pone.0024583

  36. Yan X, Chao T, Tu K et al (2007) Improving the prediction of human microRNA target genes by using ensemble algorithm. FEBS Lett 581:1587–1593. doi:10.1016/j.febslet.2007.03.022

    Article  CAS  PubMed  Google Scholar 

  37. Schapire RE (2013) Explaining AdaBoost. In: Empirical inference: Festschrift honor Vladimir N. Vapnik. Springer, Berlin, Heidelberg, pp 37–52

    Chapter  Google Scholar 

  38. Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Compu Syst Sci 55:119–139. doi:10.1006/jcss.1997.1504

    Article  Google Scholar 

  39. Sturm M, Hackenberg M, Langenberger D, Frishman D (2010) TargetSpy: a supervised machine learning approach for microRNA target prediction . BMC Bioinformatics 11:292. doi:10.1186/1471-2105-11-292

  40. Webb GI (2000) MultiBoosting: a technique for combining boosting and wagging. Mach Learn 40:159–196

    Article  Google Scholar 

  41. Iba W, Langley P (1992) Induction of one-level decision trees. ML92 proceeding of the ninth int conf mach learn aberdeen, Scotland, 1–3 July 1992, pp 233–240

    Google Scholar 

  42. Reczko M, Maragkakis M, Alexiou P et al (2012) Accurate microRNA target prediction using detailed binding site accessibility and machine learning on proteomics data. Front Genet 2:1–13. doi:10.3389/fgene.2011.00103

  43. Yousef M, Jung S, Kossenkov AV et al (2007) Naive Bayes for microRNA target predictions—machine learning for microRNA targets. Bioinformatics 23:2987–2992. doi:10.1093/bioinformatics/btm484

    Article  CAS  PubMed  Google Scholar 

  44. Wong N, Wang X (2015) miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res 43:D146–D152. doi:10.1093/nar/gku1104

  45. Huang DW, Lempicki RA, Sherman BT (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  46. Wang J, Duncan D, Shi Z, Zhang B (2013) WEB-based GEne SeT AnaLysis toolkit (WebGestalt): update 2013. Nucleic Acids Res 41(Web Server issue):W77–W83

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sales G, Coppe A, Bisognin A et al (2010) Magia, a web-based tool for miRNA and genes integrated analysis. Nucleic Acids Res 38(Web Server issue):W352–W359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ulitsky I, Laurent LC, Shamir R (2010) Towards computational prediction of microRNA function and activity. Nucleic Acids Res 38:e160–e160. doi:10.1093/nar/gkq570

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wang X (2008) miRDB: a microRNA target prediction and functional annotation database with a wiki interface. RNA 14:1012–1017. doi:10.1261/rna.965408.was

  50. Joung JG, Hwang KB, Nam JW et al (2007) Discovery of microRNA-mRNA modules via population-based probabilistic learning. Bioinformatics 23:1141–1147. doi:10.1093/bioinformatics/btm045

    Article  CAS  PubMed  Google Scholar 

  51. Zhang S, Li Q, Liu J, Zhou XJ (2011) A novel computational framework for simultaneous integration of multiple types of genomic data to identify microrna-gene regulatory modules. Bioinformatics 27(13):i401–i409. doi:10.1093/bioinformatics/btr206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tran D, Satou K, Ho T et al (2008) Finding microRNA regulatory modules in human genome using rule induction. BMC Bioinformatics 9:S5. doi:10.1186/1471-2105-9-S12-S5

    Article  PubMed  PubMed Central  Google Scholar 

  53. Liu B, Li J, Tsykin A (2009) Discovery of functional miRNA-mRNA regulatory modules with computational methods. J Biomed Inform 42:685–691. doi:10.1016/j.jbi.2009.01.005

    Article  CAS  PubMed  Google Scholar 

  54. Liu B, Li J, Tsykin A et al (2009) Exploring complex miRNA-mRNA interactions with Bayesian networks by splitting-averaging strategy. BMC Bioinformatics 10:408. doi:10.1186/1471-2105-10-408

    Article  PubMed  PubMed Central  Google Scholar 

  55. Nunez-Iglesias J, Liu CC, Morgan TE et al (2010) Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer’s disease cortex reveals altered miRNA regulation . PLoS One 5(2):e8898. doi:10.1371/journal.pone.0008898

  56. Liu B, Liu L, Tsykin A et al (2010) Identifying functional miRNA-mRNA regulatory modules with correspondence latent dirichlet allocation. Bioinformatics 26:3105–3111. doi:10.1093/bioinformatics/btq576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan G. Benton Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Singh, S., Benton, R.G., Singh, A., Singh, A. (2017). Machine Learning Techniques in Exploring MicroRNA Gene Discovery, Targets, and Functions. In: Huang, J., et al. Bioinformatics in MicroRNA Research. Methods in Molecular Biology, vol 1617. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7046-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7046-9_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7044-5

  • Online ISBN: 978-1-4939-7046-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics