Next-Generation Sequencing for MicroRNA Expression Profile

  • Yue Hu
  • Wenjun LanEmail author
  • Daniel Miller
Part of the Methods in Molecular Biology book series (MIMB, volume 1617)


Sequencing technologies have made considerable advancements. From the Sanger sequencing method to the next-generation sequencing (NGS) methods, and from the NGS methods to the third-generation sequencing methods, we can see the development thread of the sequencing technology. Currently, NGS is the main contender in the sequencing market. NGS technologies provide an opportunity to research the microRNA (miRNA) expression profiles in detail. The NGS platforms have their own special characteristics, but share some main ideas. DNA sequencing via NGS is fundamental for RNA sequencing and miRNA sequencing. MiRNA sequencing has special characteristics. The pipeline of miRNA sequencing by NGS is explained in detail from the wet experiment to the dry experiment.

Key words

Next-generation sequencing MicroRNA expression profile 454 Illumina Ion Torrent SOLiD 


  1. 1.
    Willenbrock H, Salomon J, Sokilde R, Barken KB, Hansen TN, Nielsen FC, Moller S, Litman T (2009) Quantitative miRNA expression analysis: comparing microarrays with next-generation sequencing. RNA 15(11):2028–2034. doi: 10.1261/rna.1699809 CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Git A, Dvinge H, Salmon-Divon M, Osborne M, Kutter C, Hadfield J, Bertone P, Caldas C (2010) Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA 16(5):991–1006. doi: 10.1261/rna.1947110 CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Mestdagh P, Hartmann N, Baeriswyl L, Andreasen D, Bernard N, Chen C, Cheo D, D'Andrade P, DeMayo M, Dennis L (2014) Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat Methods 11(8):809–815CrossRefPubMedGoogle Scholar
  4. 4.
    Schuster SC (2007) Next-generation sequencing transforms today’s biology. Nature 200(8):16–18Google Scholar
  5. 5.
    Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24(3):133–141CrossRefPubMedGoogle Scholar
  6. 6.
    Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92(5):255–264CrossRefPubMedGoogle Scholar
  7. 7.
    Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11(1):31–46CrossRefPubMedGoogle Scholar
  8. 8.
    Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26(10):1135–1145CrossRefPubMedGoogle Scholar
  9. 9.
    Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74(12):5463–5467CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Rothberg JM, Leamon JH (2008) The development and impact of 454 sequencing. Nat Biotechnol 26(10):1117–1124CrossRefPubMedGoogle Scholar
  11. 11.
    Taylor KH, Kramer RS, Davis JW, Guo J, Duff DJ, Xu D, Caldwell CW, Shi H (2007) Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res 67(18):8511–8518CrossRefPubMedGoogle Scholar
  12. 12.
    Wicker T, Schlagenhauf E, Graner A, Close TJ, Keller B, Stein N (2006) 454 sequencing put to the test using the complex genome of barley. BMC Genomics 7(1):275CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Quail MA, Kozarewa I, Smith F, Scally A, Stephens PJ, Durbin R, Swerdlow H, Turner DJ (2008) A large genome center’s improvements to the Illumina sequencing system. Nat Methods 5(12):1005–1010CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y (2012) A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13(1):341CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Merriman B, Torrent I, Rothberg JM, Team D (2012) Progress in ion torrent semiconductor chip based sequencing. Electrophoresis 33(23):3397–3417CrossRefPubMedGoogle Scholar
  16. 16.
    Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M (2012) Comparison of next-generation sequencing systems. Biomed Res Int 2012:251364Google Scholar
  17. 17.
    Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S (2009) Real-time DNA sequencing from single polymerase molecules. Science 323(5910):133–138. doi: 10.1126/science.1162986 CrossRefPubMedGoogle Scholar
  18. 18.
    Harris TD, Buzby PR, Babcock H, Beer E, Bowers J, Braslavsky I, Causey M, Colonell J, Dimeo J, Efcavitch JW, Giladi E, Gill J, Healy J, Jarosz M, Lapen D, Moulton K, Quake SR, Steinmann K, Thayer E, Tyurina A, Ward R, Weiss H, Xie Z (2008) Single-molecule DNA sequencing of a viral genome. Science 320(5872):106–109. doi: 10.1126/science.1150427 CrossRefPubMedGoogle Scholar
  19. 19.
    Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4(4):265–270. doi: 10.1038/nnano.2009.12 CrossRefPubMedGoogle Scholar
  20. 20.
    Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12(2):87–98CrossRefPubMedGoogle Scholar
  21. 21.
    Auer PL, Doerge R (2010) Statistical design and analysis of RNA sequencing data. Genetics 185(2):405–416CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Martin JA, Wang Z (2011) Next-generation transcriptome assembly. Nat Rev Genet 12(10):671–682CrossRefPubMedGoogle Scholar
  24. 24.
    Friedländer MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, Rajewsky N (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26(4):407–415CrossRefPubMedGoogle Scholar
  25. 25.
    Creighton CJ, Reid JG, Gunaratne PH (2009) Expression profiling of microRNAs by deep sequencing. Brief Bioinform 10(5):490–497CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Bar M, Wyman SK, Fritz BR, Qi J, Garg KS, Parkin RK, Kroh EM, Bendoraite A, Mitchell PS, Nelson AM (2008) MicroRNA discovery and profiling in human embryonic stem cells by deep sequencing of small RNA libraries. Stem Cells 26(10):2496–2505CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Griffiths-Jones S, Grocock RJ, Van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34(suppl 1):D140–D144CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang Z, Yu J, Li D, Zhang Z, Liu F, Zhou X, Wang T, Ling Y, Su Z (2010) PMRD: plant microRNA database. Nucleic Acids Res 38(suppl 1):D806–D813CrossRefPubMedGoogle Scholar
  29. 29.
    Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR (2003) Rfam: an RNA family database. Nucleic Acids Res 31(1):439–441CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL, Lindgreen S, Wilkinson AC, Finn RD, Griffiths-Jones S, Eddy SR (2009) Rfam: updates to the RNA families database. Nucleic Acids Res 37(suppl 1):D136–D140CrossRefPubMedGoogle Scholar
  31. 31.
    Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N (2012) miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 40(1):37–52CrossRefPubMedGoogle Scholar
  32. 32.
    Moxon S, Schwach F, Dalmay T, MacLean D, Studholme DJ, Moulton V (2008) A toolkit for analysing large-scale plant small RNA datasets. Bioinformatics 24(19):2252–2253CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.College of BioengineeringQilu University of TechnologyJinanPeople’s Republic of China
  2. 2.School of BioengineeringQilu University of TechnologyJinanPeople’s Republic of China
  3. 3.School of ComputingUniversity of South AlabamaMobileUSA

Personalised recommendations