Advertisement

Methods for Real-Time PCR-Based Diagnosis of Chlamydia pneumoniae, Chlamydia psittaci, and Chlamydia abortus Infections in an Opened Molecular Diagnostic Platform

  • Onya Opota
  • René Brouillet
  • Gilbert Greub
  • Katia Jaton
Part of the Methods in Molecular Biology book series (MIMB, volume 1616)

Abstract

The advances in molecular biology of the last decades have dramatically improved the field of diagnostic bacteriology. In particular, PCR-based technologies have impacted the diagnosis of infections caused by obligate intracellular bacteria such as pathogens from the Chlamydiacae family. Here, we describe a real-time PCR-based method using the Taqman technology for the diagnosis of Chlamydia pneumoniae, Chlamydia psittaci, and Chlamydia abortus infection. The method presented here can be applied to various clinical samples and can be adapted on opened molecular diagnostic platforms.

Key words

Chlamydia pneumoniae Chlamydia psittaci Chlamydia abortus Molecular diagnostic Real-time PCR DNA extraction Taqman 

Notes

Acknowledgments

We are grateful to all the technicians of the Diagnostic Microbiology Laboratory of the Institute of Microbiology of the Lausanne University Hospital for their technical contribution.

References

  1. 1.
    Lamoth F, Greub G (2010) Fastidious intracellular bacteria as causal agents of community-acquired pneumonia. Expert Rev Anti-Infect Ther 8(7):775–790. doi: 10.1586/eri.10.52 CrossRefPubMedGoogle Scholar
  2. 2.
    Longbottom D, Coulter LJ (2003) Animal chlamydioses and zoonotic implications. J Comp Pathol 128(4):217–244CrossRefPubMedGoogle Scholar
  3. 3.
    Yin L, Kalmar ID, Lagae S, Vandendriessche S, Vanderhaeghen W, Butaye P, Cox E, Vanrompay D (2013) Emerging Chlamydia psittaci infections in the chicken industry and pathology of Chlamydia psittaci genotype B and D strains in specific pathogen free chickens. Vet Microbiol 162(2–4):740–749. doi: 10.1016/j.vetmic.2012.09.026 CrossRefPubMedGoogle Scholar
  4. 4.
    Magnino S, Haag-Wackernagel D, Geigenfeind I, Helmecke S, Dovc A, Prukner-Radovcic E, Residbegovic E, Ilieski V, Laroucau K, Donati M, Martinov S, Kaleta EF (2009) Chlamydial infections in feral pigeons in Europe: review of data and focus on public health implications. Vet Microbiol 135(1–2):54–67. doi: 10.1016/j.vetmic.2008.09.045 CrossRefPubMedGoogle Scholar
  5. 5.
    Geigenfeind I, Vanrompay D, Haag-Wackernagel D (2012) Prevalence of Chlamydia psittaci in the feral pigeon population of Basel, Switzerland. J Med Microbiol 61(Pt 2):261–265. doi: 10.1099/jmm.0.034025-0 CrossRefPubMedGoogle Scholar
  6. 6.
    Reinhold P, Ostermann C, Liebler-Tenorio E, Berndt A, Vogel A, Lambertz J, Rothe M, Ruttger A, Schubert E, Sachse K (2012) A bovine model of respiratory Chlamydia psittaci infection: challenge dose titration. PLoS One 7(1):e30125. doi: 10.1371/journal.pone.0030125 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ostermann C, Ruttger A, Schubert E, Schrodl W, Sachse K, Reinhold P (2013) Infection, disease, and transmission dynamics in calves after experimental and natural challenge with a bovine Chlamydia psittaci isolate. PLoS One 8(5):e64066. doi: 10.1371/journal.pone.0064066 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Senn L, Greub G (2008) Local newspaper as a diagnostic aid for psittacosis: a case report. Clin Infect Dis 46(12):1931–1932. doi: 10.1086/588562 CrossRefPubMedGoogle Scholar
  9. 9.
    Asner SA, Jaton K, Kyprianidou S, Nowak AM, Greub G (2014) Chlamydia pneumoniae: possible association with asthma in children. Clin Infect Dis 58(8):1198–1199. doi: 10.1093/cid/ciu034 CrossRefPubMedGoogle Scholar
  10. 10.
    Greub G, Sahli R, Brouillet R, Jaton K (2016) Ten years of R&D and full automation in molecular diagnosis. Future Microbiol 11:403–425. doi: 10.2217/fmb.15.152 CrossRefPubMedGoogle Scholar
  11. 11.
    Welti M, Jaton K, Altwegg M, Sahli R, Wenger A, Bille J (2003) Development of a multiplex real-time quantitative PCR assay to detect Chlamydia pneumoniae, Legionella pneumophila and Mycoplasma pneumoniae in respiratory tract secretions. Diagn Microbiol Infect Dis 45(2):85–95CrossRefPubMedGoogle Scholar
  12. 12.
    Opota O, Jaton K, Branley J, Vanrompay D, Erard V, Borel N, Longbottom D, Greub G (2015) Improving the molecular diagnosis of Chlamydia psittaci and Chlamydia abortus infection with a species-specific duplex real-time PCR. J Med Microbiol (2015), 64, 1174–1185. doi: 10.1099/jmm.0.000139
  13. 13.
    Jaton K, Brouillet R (2011) Full automation of nucleic acid extraction with the dual starlet (hamilton)-magnapure 96 (roche) system: a preliminary experience. ECCMID 2011, MilanoGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Onya Opota
    • 1
  • René Brouillet
    • 1
  • Gilbert Greub
    • 1
  • Katia Jaton
    • 1
  1. 1.Institute of MicrobiologyUniversity Hospital Center, University of LausanneLausanneSwitzerland

Personalised recommendations