Probing Inner Membrane Protein Topology by Proteolysis

Part of the Methods in Molecular Biology book series (MIMB, volume 1615)

Abstract

Inner membrane proteins are inserted into the membrane via α-helices. These helices do not only constitute membrane anchors but may mediate specific interactions with membrane protein partners or participate in energetic processes. The number, location, and orientation of these helices is referred to as topology. Bitopic membrane proteins that consist of a single membrane-embedded domain connecting two soluble domains are distinguished from polytopic ones that consist of multiple membrane-spanning helices connected by extramembrane domains. Defining inner membrane protein topology could be achieved by different methods. Here we describe a protease accessibility assay that makes it possible to define topology based on digestion profiles.

Key words

Membrane protein Inner membrane Insertion Topology Transmembrane segment Bitopic Polytopic Proteolysis Protease Proteinase K Carboxypeptidase Y 

Notes

Acknowledgements

Work in EC laboratory is supported by the Centre National de la Recherche Scientifique, the Aix-Marseille Université, and grants from the Agence Nationale de la Recherche (ANR-14-CE14-0006-02 and ANR-15-CE11-0019-01). MSV is a recipient of a doctoral fellowship from the French Ministère de l’Enseignement Supérieur et de la Recherche.

References

  1. 1.
    Costa TR, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M, Waksman G (2015) Secretion systems in gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 13:343–359CrossRefGoogle Scholar
  2. 2.
    Bleves S, Lazdunski A, Filloux A (1996) Membrane topology of three Xcp proteins involved in exoprotein transport by Pseudomonas a eruginosa. J Bacteriol 178:4297–4300Google Scholar
  3. 3.
    Ross JA, Plano GV (2011) A C-terminal region of Yersinia pestis YscD binds the outer membrane secretin YscC. J Bacteriol 193:2276–2289Google Scholar
  4. 4.
    Das A, Xie YH (1998) Construction of transposon Tn3phoA: its application in defining the membrane topology of the A grobacterium tumefaciens DNA transfer proteins. Mol Microbiol 27:405–414Google Scholar
  5. 5.
    Vincent MS, Canestrari MJ, Leone P, Stathopulos J, Ize B, Zoued A, Cambillau C, Kellenberger C, Roussel A, Cascales E. (2017) Characterization of the Porphyromonas gingivalis Type IX Secretion trans-envelope PorKLMNP core complex. J Biol Chem. 292:3252–3261.Google Scholar
  6. 6.
    Aschtgen MS, Zoued A, Lloubès R, Journet L, Cascales E (2012) The C-tail anchored TssL subunit, an essential protein of the enteroaggregative Escherichia coli Sci-1 type VI secretion system, is inserted by YidC. Microbiology 1:71–82Google Scholar
  7. 7.
    Pross E, Soussoula L, Seitl I, Lupo D, Kuhn A (2016) Membrane targeting and insertion of the C-tail protein SciP. J Mol Biol 428:4218–4227.Google Scholar
  8. 8.
    Gentschev I, Goebel W (1992) Topological and functional studies on HlyB of Escherichia coli. Mol Gen Genet 232:40–48CrossRefGoogle Scholar
  9. 9.
    Allaoui A, Woestyn S, Sluiters C, Cornelis GR (1994) YscU, a Yersinia enterocolitica inner membrane protein involved in Yop secretion. J Bacteriol 176:4534–4542CrossRefGoogle Scholar
  10. 10.
    Jakubowski SJ, Krishnamoorthy V, Cascales E, Christie PJ (2004) Agrobacterium tumefaciens VirB6 domains direct the ordered export of a DNA substrate through a type IV secretion system. J Mol Biol 341:961–977CrossRefGoogle Scholar
  11. 11.
    Ma LS, Lin JS, Lai EM (2009) An IcmF family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its walker a motif is required for type VI secretion system-mediated Hcp secretion in agrobacterium tumefaciens. J Bacteriol 191:4316–4329CrossRefGoogle Scholar
  12. 12.
    Logger L, Aschtgen MS, Guérin M, Cascales E, Durand E (2016) Molecular dissection of the interface between the type VI secretion TssM cytoplasmic domain and the TssG baseplate component. J Mol Biol 428:4424–4437Google Scholar
  13. 13.
    Traxler B, Boyd D, Beckwith J (1993) The topological analysis of integral cytoplasmic membrane proteins. J Membr Biol 132:1–11CrossRefGoogle Scholar
  14. 14.
    van Geest M, Lolkema JS (2000) Membrane topology and insertion of membrane proteins: search for topogenic signals. Microbiol Mol Biol Rev 64:13–33CrossRefGoogle Scholar
  15. 15.
    Cunningham K, Lill R, Crooke E, Rice M, Moore K, Wickner W, Oliver D (1989) SecA protein, a peripheral protein of the Escherichia coli plasma membrane, is essential for the functional binding and translocation of proOmpA. EMBO J 8:955–959PubMedPubMedCentralGoogle Scholar
  16. 16.
    Larsen RA, Thomas MG, Postle K (1999) Protonmotive force, ExbB and ligand-bound FepA drive conformational changes in TonB. Mol Microbiol 31:1809–1824CrossRefGoogle Scholar
  17. 17.
    Germon P, Ray MC, Vianney A, Lazzaroni JC (2001) Energy-dependent conformational change in the TolA protein of Escherichia coli involves its N-terminal domain, TolQ, and TolR. J Bacteriol 183:4110–4114CrossRefGoogle Scholar
  18. 18.
    Cascales E, Christie PJ (2004) Agrobacterium VirB10, an ATP energy sensor required for type IV secretion. Proc Natl Acad Sci U S A 101:17228–17233CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM, UMR 7255)Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Université—Centre National de la Recherche Scientifique (CNRS)Marseille Cedex 20France

Personalised recommendations