Cell Surface Exposure

Part of the Methods in Molecular Biology book series (MIMB, volume 1615)

Abstract

Surface-exposed proteins of Gram-negative bacteria are represented by integral outer membrane beta-barrel proteins and lipoproteins. No computational methods exist for predicting surface-exposed lipoproteins, and therefore lipoprotein topology must be experimentally tested. This chapter describes three distinct but complementary methods for the detection of surface-exposed proteins: cell surface protein labeling, accessibility to extracellular protease and antibodies.

Key words

Biotinylation PEGylation Surface proteolysis Whole-cell dot blot Protein topology 

References

  1. 1.
    Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2(5):a000414CrossRefGoogle Scholar
  2. 2.
    Okuda S, Tokuda H (2011) Lipoprotein sorting in bacteria. Annu Rev Microbiol 65:239–259CrossRefGoogle Scholar
  3. 3.
    Zuckert WR (2014) Secretion of bacterial lipoproteins: through the cytoplasmic membrane, the periplasm and beyond. Biochim Biophys Acta 1843(8):1509–1516CrossRefGoogle Scholar
  4. 4.
    Konovalova A, Silhavy TJ (2015) Outer membrane lipoprotein biogenesis: lol is not the end. Philos Trans R Soc Lond Ser B Biol Sci 370(1679)Google Scholar
  5. 5.
    Wilson MM, Bernstein HD (2015) Surface-exposed lipoproteins: an emerging secretion phenomenon in gram-negative bacteria. Trends MicrobiolGoogle Scholar
  6. 6.
    Freeman TC Jr, Wimley WC (2010) A highly accurate statistical approach for the prediction of transmembrane beta-barrels. Bioinformatics 26(16):1965–1974CrossRefGoogle Scholar
  7. 7.
    Singh NK, Goodman A, Walter P, Helms V, Hayat S (2011) TMBHMM: a frequency profile based HMM for predicting the topology of transmembrane beta barrel proteins and the exposure status of transmembrane residues. Biochim Biophys Acta 1814(5):664–670CrossRefGoogle Scholar
  8. 8.
    Hayat S, Elofsson A (2012) BOCTOPUS: improved topology prediction of transmembrane beta barrel proteins. Bioinformatics 28(4):516–522CrossRefGoogle Scholar
  9. 9.
    Hermanson GT (2013) Bioconjugate techniques, 3rd edn. Academic press, London, pp 1–1146CrossRefGoogle Scholar
  10. 10.
    Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67(4):593–656CrossRefGoogle Scholar
  11. 11.
    Konovalova A, Perlman DH, Cowles CE, Silhavy TJ (2014) Transmembrane domain of surface-exposed outer membrane lipoprotein RcsF is threaded through the lumen of beta-barrel proteins. Proc Natl Acad Sci U S A 111(41):E4350–E4358CrossRefGoogle Scholar
  12. 12.
    Cowles CE, Li Y, Semmelhack MF, Cristea IM, Silhavy TJ (2011) The free and bound forms of Lpp occupy distinct subcellular locations in Escherichia coli. Mol Microbiol 79(5):1168–1181CrossRefGoogle Scholar
  13. 13.
    Rosenbusch JP (1990) Structural and functional properties of porin channels in E. coli outer membranes. Experientia 46(2):167–173PubMedGoogle Scholar
  14. 14.
    Wilson MM, Anderson DE, Bernstein HD (2015) Analysis of the outer membrane proteome and secretome of Bacteroides fragilis reveals a multiplicity of secretion mechanisms. PLoS One 10(2):e0117732CrossRefGoogle Scholar
  15. 15.
    Pugsley AP, Kornacker MG, Ryter A (1990) Analysis of the subcellular location of pullulanase produced by Escherichia coli carrying the pulA gene from Klebsiella pneumoniae strain UNF5023. Mol Microbiol 4(1):59–72CrossRefGoogle Scholar
  16. 16.
    Pinne M, Haake DA (2009) A comprehensive approach to identification of surface-exposed, outer membrane-spanning proteins of Leptospira interrogans. PLoS One 4(6):e6071CrossRefGoogle Scholar
  17. 17.
    Porter WH, Preston JL (1975) Retention of trypsin and chymotrypsin proteolytic activity in sodium dodecyl sulfate solutions. Anal Biochem 66(1):69–77CrossRefGoogle Scholar
  18. 18.
    Hilz H, Wiegers U, Adamietz P (1975) Stimulation of proteinase K action by denaturing agents: application to the isolation of nucleic acids and the degradation of 'masked' proteins. Eur J Biochem 56(1):103–108CrossRefGoogle Scholar
  19. 19.
    Pinne M, Haake D (2011) Immuno-fluorescence assay of leptospiral surface-exposed proteins. J Vis Exp 53Google Scholar
  20. 20.
    Blom K, Lundin BS, Bolin I, Svennerholm A (2001) Flow cytometric analysis of the localization of helicobacter pylori antigens during different growth phases. FEMS Immunol Med Microbiol 30(3):173–179CrossRefGoogle Scholar
  21. 21.
    Matsunaga J, Werneid K, Zuerner RL, Frank A, Haake DA (2006) LipL46 is a novel surface-exposed lipoprotein expressed during leptospiral dissemination in the mammalian host. Microbiology 152(Pt 12):3777–3786CrossRefGoogle Scholar
  22. 22.
    Moeck GS, Bazzaz BS, Gras MF, Ravi TS, Ratcliffe MJ, Coulton JW (1994) Genetic insertion and exposure of a reporter epitope in the ferrichrome-iron receptor of Escherichia coli K-12. J Bacteriol 176(14):4250–4259CrossRefGoogle Scholar
  23. 23.
    Newton SM, Klebba PE, Michel V, Hofnung M, Charbit A (1996) Topology of the membrane protein LamB by epitope tagging and a comparison with the X-ray model. J Bacteriol 178(12):3447–3456CrossRefGoogle Scholar
  24. 24.
    Schnell U, Dijk F, Sjollema KA, Giepmans BN (2012) Immunolabeling artifacts and the need for live-cell imaging. Nat Methods 9(2):152–158CrossRefGoogle Scholar
  25. 25.
    Dinh T, Bernhardt TG (2011) Using superfolder green fluorescent protein for periplasmic protein localization studies. J Bacteriol 193(18):4984–4987CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Lewis Thomas Laboratory, Department of Molecular BiologyPrinceton UniversityPrincetonUSA

Personalised recommendations