Advertisement

Energy Requirements for Protein Secretion via the Flagellar Type III Secretion System

Part of the Methods in Molecular Biology book series (MIMB, volume 1615)

Abstract

Protein transport across the cytoplasmic membrane is coupled to energy derived from adenosine triphosphate hydrolysis or the protein motive force (pmf). A sophisticated, multi-component type III secretion system exports substrate proteins of both the bacterial flagellum and virulence-associated injectisome system of many Gram-negative pathogens. The type-III secretion system is primarily a pmf-driven protein exporter. Here, I describe methods to investigate the export of substrate proteins into the culture supernatant under conditions that manipulate the pmf.

Key words

Type III secretion system Bacterial flagellum Protein export Proton motive force ∆pH gradient ∆Ψ gradient Ionophore Carbonyl cyanide m-chlorophenylhydrazone (CCCP) Valinomycin 

Notes

Acknowledgments

This work was supported by the Helmholtz Association young investigator grant VH-NG-932 and the People Programme (Marie Curie Actions) of the European Union Seventh Framework Programme (grant 334030).

References

  1. 1.
    Wickner W, Schekman R (2005) Protein translocation across biological membranes. Science 310:1452–1456CrossRefGoogle Scholar
  2. 2.
    Erhardt M, Namba K, Hughes KT (2010) Bacterial nanomachines: the flagellum and type III injectisome. Cold Spring Harb Perspect Biol 2:a000299CrossRefGoogle Scholar
  3. 3.
    Minamino T (2014) Protein export through the bacterial flagellar type III export pathway. Biochim Biophys Acta 1843:1642–1648CrossRefGoogle Scholar
  4. 4.
    Diepold A, Wagner S (2014) Assembly of the bacterial type III secretion machinery. FEMS Microbiol Rev 38:802–822CrossRefGoogle Scholar
  5. 5.
    Wilharm G, Lehmann V, Krauss K, Lehnert B, Richter S, Ruckdeschel K, Heesemann J, Trulzsch K (2004) Yersinia enterocolitica type III secretion depends on the proton motive force but not on the flagellar motor components MotA and MotB. Infect Immun 72:4004–4009CrossRefGoogle Scholar
  6. 6.
    Paul K, Erhardt M, Hirano T, Blair DF, Hughes KT (2008) Energy source of flagellar type III secretion. Nature 451:489–492CrossRefGoogle Scholar
  7. 7.
    Minamino T, Namba K (2008) Distinct roles of the FliI ATPase and proton motive force in bacterial flagellar protein export. Nature 451:485–488CrossRefGoogle Scholar
  8. 8.
    Lee PC, Zmina SE, Stopford CM, Toska J, Rietsch A (2014) Control of type III secretion activity and substrate specificity by the cytoplasmic regulator PcrG. Proc Natl Acad Sci U S A 111:E2027–E2036CrossRefGoogle Scholar
  9. 9.
    Erhardt M, Mertens ME, Fabiani FD, Hughes KT (2014) ATPase-independent type-III protein secretion in Salmonella enterica. PLoS Genet 10:e1004800CrossRefGoogle Scholar
  10. 10.
    Morimoto YV, Ito M, Hiraoka KD, Che YS, Bai F, Kami-Ike N, Namba K, Minamino T (2014) Assembly and stoichiometry of FliF and FlhA in Salmonella flagellar basal body. Mol Microbiol 91:1214–1226CrossRefGoogle Scholar
  11. 11.
    McMurry JL, Murphy JW, Gonzalez-Pedrajo B (2006) The FliN-FliH interaction mediates localization of flagellar export ATPase FliI to the C ring complex. Biochemistry 45:11790–11798CrossRefGoogle Scholar
  12. 12.
    Erhardt M, Hughes KT (2010) C-ring requirement in flagellar type III secretion is bypassed by FlhDC upregulation. Mol Microbiol 75:376–393CrossRefGoogle Scholar
  13. 13.
    Diepold A, Kudryashev M, Delalez NJ, Berry RM, Armitage JP (2015) Composition, formation, and regulation of the cytosolic c-ring, a dynamic component of the type III secretion injectisome. PLoS Biol 13:e1002039CrossRefGoogle Scholar
  14. 14.
    Hughes KT, Gillen KL, Semon MJ, Karlinsey JE (1993) Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science 262:1277–1280CrossRefGoogle Scholar
  15. 15.
    Minamino T, Morimoto YV, Hara N, Namba K (2011) An energy transduction mechanism used in bacterial flagellar type III protein export. Nat Commun 2:475CrossRefGoogle Scholar
  16. 16.
    Minamino T, Imae Y, Oosawa F, Kobayashi Y, Oosawa K (2003) Effect of intracellular pH on rotational speed of bacterial flagellar motors. J Bacteriol 185:1190–1194CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Helmholtz Centre for Infection ResearchBraunschweigGermany

Personalised recommendations