Advertisement

Protein–Protein Interaction: Tandem Affinity Purification in Bacteria

  • Julie P. M. Viala
  • Emmanuelle Bouveret
Part of the Methods in Molecular Biology book series (MIMB, volume 1615)

Abstract

The discovery of protein–protein interaction networks can lead to the unveiling of protein complex(es) forming cellular machinerie(s) or reveal component proteins of a specific cellular pathway. Deciphering protein–protein interaction networks therefore contributes to a deeper understanding of how cells function. Here we describe the protocol to perform tandem affinity purification (TAP) in bacteria, which enables the identification of the partners of a bait protein under native conditions. This method consists in two sequential steps of affinity purification using two different tags. For that purpose, the bait protein is translationally fused to the TAP tag, which consists of a calmodulin binding peptide (CBP) and two immunoglobulin G (IgG) binding domains of Staphylococcus aureus protein A (ProtA) that are separated by the tobacco etch virus (TEV) protease cleavage site. After the first round of purification based on the binding of ProtA to IgG coated beads, TEV protease cleavage releases CBP-tagged bait-protein along with its partners for a second round of purification on calmodulin affinity resin and leaves behind protein contaminants bound to IgG. Creating the TAP-tag translational fusion at the chromosomal locus allows detection of protein interactions occurring in physiological conditions.

Key words

Protein–protein interaction Protein complex Affinity purification Tandem affinity purification (TAP) Calmodulin binding peptide (CBP) ProtA Tobacco etch virus (TEV) Escherichia coli Salmonella 

References

  1. 1.
    Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M et al (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17:1030–1032CrossRefGoogle Scholar
  2. 2.
    Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M et al (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147CrossRefGoogle Scholar
  3. 3.
    Gavin AC, Aloy P, Grandi P, Krause R, Boesche M et al (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440:631–636CrossRefGoogle Scholar
  4. 4.
    Gully D, Moinier D, Loiseau L, Bouveret E (2003) New partners of acyl carrier protein detected in Escherichia coli by tandem affinity purification. FEBS Lett 548:90–96CrossRefGoogle Scholar
  5. 5.
    Butland G, Peregrin-Alvarez JM, Li J, Yang W, Yang X et al (2005) Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433:531–537CrossRefGoogle Scholar
  6. 6.
    Collins MO, Choudhary JS (2008) Mapping multiprotein complexes by affinity purification and mass spectrometry. Curr Opin Biotechnol 19:324–330CrossRefGoogle Scholar
  7. 7.
    Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645CrossRefGoogle Scholar
  8. 8.
    Zeghouf M, Li J, Butland G, Borkowska A, Canadien V et al (2004) Sequential Peptide Affinity (SPA) system for the identification of mammalian and bacterial protein complexes. J Proteome Res 3:463–468CrossRefGoogle Scholar
  9. 9.
    Gully D, Bouveret E (2006) A protein network for phospholipid synthesis uncovered by a variant of the tandem affinity purification method in Escherichia coli. Proteomics 6:282–293CrossRefGoogle Scholar
  10. 10.
    Pompeo F, Luciano J, Galinier A (2007) Interaction of GapA with HPr and its homologue, Crh: novel levels of regulation of a key step of glycolysis in Bacillus subtilis? J Bacteriol 189:1154–1157CrossRefGoogle Scholar
  11. 11.
    Viala JP, Prima V, Puppo R, Agrebi R, Canestrari MJ, Lignon S et al (2017) Acylation of the type 3 secretion system translocon using a dedicated acyl carrier protein. PLoS Genet 13(1):e1006556Google Scholar
  12. 12.
    Babu M, Butl G, Pogoutse O, Li J, Greenblatt JF et al (2009) Sequential peptide affinity purification system for the systematic isolation and identification of protein complexes from Escherichia coli. Methods Mol Biol 564:373–400CrossRefGoogle Scholar
  13. 13.
    Stingl K, Schauer K, Ecobichon C, Labigne A, Lenormand P et al (2008) In vivo interactome of Helicobacter pylori urease revealed by tandem affinity purification. Mol Cell Proteomics 7:2429–2441CrossRefGoogle Scholar
  14. 14.
    Puig O, Caspary F, Rigaut G, Rutz B, Bouveret E et al (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24:218–229CrossRefGoogle Scholar
  15. 15.
    Bouveret E, Rigaut G, Shevchenko A, Wilm M, Seraphin B (2000) A Sm-like protein complex that participates in mRNA degradation. EMBO J 19:1661–1671CrossRefGoogle Scholar
  16. 16.
    So EC, Schroeder GN, Carson D, Mattheis C, Mousnier A et al (2016) The Rab-binding profiles of bacterial virulence factors during infection. J Biol Chem 291:5832–5843CrossRefGoogle Scholar
  17. 17.
    Sana TG, Baumann C, Merdes A, Soscia C, Rattei T et al (2015) Internalization of Pseudomonas aeruginosa strain PAO1 into epithelial cells is promoted by interaction of a T6SS effector with the microtubule network. MBio 6:e00712CrossRefGoogle Scholar
  18. 18.
    Battesti A, Bouveret E (2008) Improvement of bacterial two-hybrid vectors for detection of fusion proteins and transfer to pBAD-tandem affinity purification, calmodulin binding peptide, or 6-histidine tag vectors. Proteomics 8:4768–4771CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Laboratoire d’Ingénierie des Systèmes Macromoléculaires, UMR7255Institut de Microbiologie de la Méditerranée, Aix-Marseille University—CNRSMarseilleFrance

Personalised recommendations