Advertisement

Characterization and Functional Phenotyping of Renal Immune Cells via Flow Cytometry

  • Nathan P. Rudemiller
  • Steven D. CrowleyEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1614)

Abstract

A variety of immune cell subsets contribute to the pathogenesis of hypertension and associated kidney damage following inappropriate activation of the renin–angiotensin system (RAS). These immune cell subsets often express common surface markers, which complicates their separation and characterization in vivo. Accordingly, flow cytometry has become an invaluable tool for parsing immune cell populations because this technique permits the simultaneous detection of up to 18 markers on a single cell. Below we describe a process by which one can determine the immune cell subsets in the kidney via flow cytometry.

Key words

Kidney diseases Inflammation Flow cytometry Hypertension Cytokines 

References

  1. 1.
    Dahlof B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, de Faire U, Fyhrquist F, Ibsen H, Kristiansson K, Lederballe-Pedersen O, Lindholm LH, Nieminen MS, Omvik P, Oparil S, Wedel H, Group LS (2002) Cardiovascular morbidity and mortality in the losartan intervention for endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 359(9311):995–1003. doi: 10.1016/S0140-6736(02)08089-3 CrossRefPubMedGoogle Scholar
  2. 2.
    Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, Remuzzi G, Snapinn SM, Zhang Z, Shahinfar S, Investigators RS (2001) Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 345(12):861–869. doi: 10.1056/NEJMoa011161 CrossRefPubMedGoogle Scholar
  3. 3.
    Zhang JD, Patel MB, Griffiths R, Dolber PC, Ruiz P, Sparks MA, Stegbauer J, Jin H, Gomez JA, Buckley AF, Lefler WS, Chen D, Crowley SD (2014) Type 1 angiotensin receptors on macrophages ameliorate IL-1 receptor-mediated kidney fibrosis. J Clin Invest 124(5):2198–2203. doi: 10.1172/JCI61368 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Zhang JD, Patel MB, Song YS, Griffiths R, Burchette J, Ruiz P, Sparks MA, Yan M, Howell DN, Gomez JA, Spurney RF, Coffman TM, Crowley SD (2012) A novel role for type 1 angiotensin receptors on T lymphocytes to limit target organ damage in hypertension. Circ Res 110(12):1604–1617. doi: 10.1161/CIRCRESAHA.111.261768 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, Goronzy J, Weyand C, Harrison DG (2007) Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med 204(10):2449–2460. doi: 10.1084/jem.20070657 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zhang J, Rudemiller NP, Patel MB, Karlovich NS, Wu M, McDonough AA, Griffiths R, Sparks MA, Jeffs AD, Crowley SD (2016) Interleukin-1 receptor activation potentiates salt reabsorption in angiotensin II-induced hypertension via the NKCC2 Co-transporter in the nephron. Cell Metab 23(2):360–368. doi: 10.1016/j.cmet.2015.11.013 CrossRefPubMedGoogle Scholar
  7. 7.
    Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 cells. Annu Rev Immunol 27:485–517. doi: 10.1146/annurev.immunol.021908.132710 CrossRefPubMedGoogle Scholar
  8. 8.
    Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100(6):655–669CrossRefPubMedGoogle Scholar
  9. 9.
    Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299(5609):1057–1061. doi: 10.1126/science.1079490 CrossRefPubMedGoogle Scholar
  10. 10.
    Zheng W, Flavell RA (1997) The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89(4):587–596CrossRefPubMedGoogle Scholar
  11. 11.
    Chattopadhyay PK, Roederer M (2012) Cytometry: today’s technology and tomorrow’s horizons. Methods 57(3):251–258. doi: 10.1016/j.ymeth.2012.02.009 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Itani HA, Xiao L, Saleh MA, Wu J, Pilkinton MA, Dale BL, Barbaro NR, Foss JD, Kirabo A, Montaniel KR, Norlander AE, Chen W, Sato R, Navar LG, Mallal SA, Madhur MS, Bernstein KE, Harrison DG (2016) CD70 exacerbates blood pressure elevation and renal damage in response to repeated hypertensive stimuli. Circ Res. doi: 10.1161/CIRCRESAHA.115.308111 PubMedPubMedCentralGoogle Scholar
  13. 13.
    Saleh MA, McMaster WG, Wu J, Norlander AE, Funt SA, Thabet SR, Kirabo A, Xiao L, Chen W, Itani HA, Michell D, Huan T, Zhang Y, Takaki S, Titze J, Levy D, Harrison DG, Madhur MS (2015) Lymphocyte adaptor protein LNK deficiency exacerbates hypertension and end-organ inflammation. J Clin Invest 125(3):1189–1202. doi: 10.1172/JCI76327 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wei Z, Spizzo I, Diep H, Drummond GR, Widdop RE, Vinh A (2014) Differential phenotypes of tissue-infiltrating T cells during angiotensin II-induced hypertension in mice. PLoS One 9(12):e114895. doi: 10.1371/journal.pone.0114895 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Radcliff G, Jaroszeski MJ (1998) Basics of flow cytometry. Methods Mol Biol 91:1–24PubMedGoogle Scholar
  16. 16.
    Maecker HT, Trotter J (2006) Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry A 69(9):1037–1042. doi: 10.1002/cyto.a.20333 CrossRefPubMedGoogle Scholar
  17. 17.
    Shapiro HM (2004) Excitation and emission spectra of common dyes. Curr Protoc Cytom Chapter 1:Unit 1.19. doi: 10.1002/0471142956.cy0119s26
  18. 18.
    Roederer M (2001) Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats. Cytometry 45(3):194–205CrossRefPubMedGoogle Scholar
  19. 19.
    Yu YR, O'Koren EG, Hotten DF, Kan MJ, Kopin D, Nelson ER, Que L, Gunn MD (2016) A protocol for the comprehensive flow cytometric analysis of immune cells in normal and inflamed murine non-lymphoid tissues. PLoS One 11(3):e0150606. doi: 10.1371/journal.pone.0150606 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Schuerwegh AJ, Stevens WJ, Bridts CH, De Clerck LS (2001) Evaluation of monensin and brefeldin A for flow cytometric determination of interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha in monocytes. Cytometry 46(3):172–176CrossRefPubMedGoogle Scholar
  21. 21.
    Nylander S, Kalies I (1999) Brefeldin A, but not monensin, completely blocks CD69 expression on mouse lymphocytes: efficacy of inhibitors of protein secretion in protocols for intracellular cytokine staining by flow cytometry. J Immunol Methods 224(1–2):69–76CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Division of Nephrology, Department of MedicineDurham VA and Duke University Medical CentersDurhamUSA
  2. 2.Division of Nephrology, Department of MedicineDurham VA and Duke University Medical CentersDurhamUSA

Personalised recommendations