Advertisement

Comprehensive Assessments of Energy Balance in Mice

  • Justin L. Grobe
Part of the Methods in Molecular Biology book series (MIMB, volume 1614)

Abstract

Increasing evidence supports a major role for the renin‐angiotensin system (RAS) in energy balance physiology. The RAS exists as a circulating system but also as a local paracrine/autocrine signaling mechanism in target tissues including the gastrointestinal tract, the brain, the kidney, and distinct adipose beds. Through activation of various receptors in these target tissues, the RAS contributes to the control of food intake behavior, digestive efficiency, spontaneous physical activity, and aerobic and anaerobic resting metabolism. Although the assortment of methodologies available to assess the various aspects of energy balance can be daunting for an investigator new to this area, a relatively straightforward array of entry-level and advanced methodologies can be employed to comprehensively and quantitatively dissect the effects of experimental manipulations on energy homeostasis. Such methodologies and a simple initial workflow for the use of these methods are described in this chapter, including the use of metabolic caging systems, bomb calorimetry, body composition analyzers, respirometry systems, and direct calorimetry systems. Finally, a brief discussion of the statistical analyses of metabolic data is included.

Key words

Energy balance Caloric balance Obesity Calorimetry Metabolism Digestive efficiency Energy efficiency Resting metabolic rate Aerobic Anaerobic 

Notes

Acknowledgments

The Grobe laboratory is supported by grants from the NIH (HL134850, HL084207), the American Diabetes Association (1-14-BS-079), the American Heart Association (15SFRN23730000), the University of Iowa Office of the Vice President for Research and Economic Development, the Fraternal Order of Eagles’ Diabetes Research Center, and the UIHC Center for Hypertension Research. Some of the equipment illustrated was purchased with support from the Roy J. Carver Trust. Connie C. Grobe, PhD, Jeremy A. Sandgren, John R. Kirby, PhD, and Colin M.L. Burnett, MD, MS provided critical revisions of the chapter text.

References

  1. 1.
    Littlejohn NK, Grobe JL (2015) Opposing tissue-specific roles of angiotensin in the pathogenesis of obesity, and implications for obesity-related hypertension. Am J Physiol Regul Integr Comp Physiol 309(12):R1463–R1473. doi: 10.1152/ajpregu.00224.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hall KD, Sacks G, Chandramohan D, Chow CC, Wang YC, Gortmaker SL, Swinburn BA (2011) Quantification of the effect of energy imbalance on bodyweight. Lancet 378(9793):826–837. doi: 10.1016/s0140-6736(11)60812-x CrossRefPubMedGoogle Scholar
  3. 3.
    Grobe JL, Grobe CL, Beltz TG, Westphal SG, Morgan DA, Xu D, de Lange WJ, Li H, Sakai K, Thedens DR, Cassis LA, Rahmouni K, Mark AL, Johnson AK, Sigmund CD (2010) The brain renin-angiotensin system controls divergent efferent mechanisms to regulate fluid and energy balance. Cell Metab 12(5):431–442. doi: 10.1016/j.cmet.2010.09.011 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Grobe JL, Dickson ME, Park S, Davis DR, Born EJ, Sigmund CD (2010) Cardiovascular consequences of genetic variation at −6/235 in human angiotensinogen using "humanized" gene-targeted mice. Hypertension 56(5):981–987. doi: 10.1161/hypertensionaha.110.157354 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Grobe JL, Buehrer BA, Hilzendeger AM, Liu X, Davis DR, Xu D, Sigmund CD (2011) Angiotensinergic signaling in the brain mediates metabolic effects of deoxycorticosterone (DOCA)-salt in C57 mice. Hypertension 57(3):600–607. doi: 10.1161/hypertensionaha.110.165829 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Littlejohn NK, Siel RB Jr, Ketsawatsomkron P, Pelham CJ, Pearson NA, Hilzendeger AM, Buehrer BA, Weidemann BJ, Li H, Davis DR, Thompson AP, Liu X, Cassell MD, Sigmund CD, Grobe JL (2013) Hypertension in mice with transgenic activation of the brain renin-angiotensin system is vasopressin dependent. Am J Physiol Regul Integr Comp Physiol 304(10):R818–R828. doi: 10.1152/ajpregu.00082.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Grobe JL, Rahmouni K, Liu X, Sigmund CD (2013) Metabolic rate regulation by the renin-angiotensin system: brain vs. body. Pflugers Arch 465(1):167–175. doi: 10.1007/s00424-012-1096-9 CrossRefPubMedGoogle Scholar
  8. 8.
    Weidemann BJ, Voong S, Morales-Santiago FI, Kahn MZ, Ni J, Littlejohn NK, Claflin KE, Burnett CM, Pearson NA, Lutter ML, Grobe JL (2015) Dietary sodium suppresses digestive efficiency via the renin-angiotensin system. Sci Rep 5:11123. doi: 10.1038/srep11123 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Fink BD, Herlein JA, Guo DF, Kulkarni C, Weidemann BJ, Yu L, Grobe JL, Rahmouni K, Kerns RJ, Sivitz WI (2014) A mitochondrial-targeted coenzyme q analog prevents weight gain and ameliorates hepatic dysfunction in high-fat-fed mice. J Pharmacol Exp Ther 351(3):699–708. doi: 10.1124/jpet.114.219329 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bahr SM, Weidemann BJ, Castro AN, Walsh JW, deLeon O, Burnett CM, Pearson NA, Murry DJ, Grobe JL, Kirby JR (2015) Risperidone-induced weight gain is mediated through shifts in the gut microbiome and suppression of energy expenditure. EBioMedicine 2(11):1725–1734. doi: 10.1016/j.ebiom.2015.10.018 CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Burnett CM, Grobe JL (2013) Direct calorimetry identifies deficiencies in respirometry for the determination of resting metabolic rate in C57Bl/6 and FVB mice. Am J Phys Endocrinol Metab 305(7):E916–E924. doi: 10.1152/ajpendo.00387.2013 CrossRefGoogle Scholar
  12. 12.
    Burnett CM, Grobe JL (2014) Dietary effects on resting metabolic rate in C57BL/6 mice are differentially detected by indirect (O2/CO2 respirometry) and direct calorimetry. Mol Metab 3(4):460–464. doi: 10.1016/j.molmet.2014.03.003 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Xu D, Borges GR, Davis DR, Agassandian K, Sequeira Lopez ML, Gomez RA, Cassell MD, Grobe JL, Sigmund CD (2011) Neuron- or glial-specific ablation of secreted renin does not affect renal renin, baseline arterial pressure, or metabolism. Physiol Genomics 43(6):286–294. doi: 10.1152/physiolgenomics.00208.2010 CrossRefPubMedGoogle Scholar
  14. 14.
    Hilzendeger AM, Cassell MD, Davis DR, Stauss HM, Mark AL, Grobe JL, Sigmund CD (2013) Angiotensin type 1a receptors in the subfornical organ are required for deoxycorticosterone acetate-salt hypertension. Hypertension 61(3):716–722. doi: 10.1161/hypertensionaha.111.00356 CrossRefPubMedGoogle Scholar
  15. 15.
    Pittet P, Gygax PH, Jequier E (1974) Thermic effect of glucose and amino acids in man studied by direct and indirect calorimetry. Br J Nutr 31(3):343–349CrossRefPubMedGoogle Scholar
  16. 16.
    Pittet P, Chappuis P, Acheson K, De Techtermann F, Jequier E (1976) Thermic effect of glucose in obese subjects studied by direct and indirect calorimetry. Br J Nutr 35(2):281–292CrossRefPubMedGoogle Scholar
  17. 17.
    Walsberg GE, Hoffman TC (2005) Direct calorimetry reveals large errors in respirometric estimates of energy expenditure. J Exp Biol 208(Pt 6):1035–1043. doi: 10.1242/jeb.01477 CrossRefPubMedGoogle Scholar
  18. 18.
    Walsberg GE, Hoffman TC (2006) Using direct calorimetry to test the accuracy of indirect calorimetry in an ectotherm. Physiol Biochem Zool 79(4):830–835. doi: 10.1086/505514 CrossRefPubMedGoogle Scholar
  19. 19.
    Burger M, van Breukelen F (2013) Construction of a low cost and highly sensitive direct heat calorimeter suitable for estimating metabolic rate in small animals. J Therm Biol 38(8):508–512. doi: 10.1016/j.jtherbio.2013.09.002 CrossRefGoogle Scholar
  20. 20.
    Lighton JRB (2008) Measuring metabolic rates: a manual for scientists. Oxford University Press, Oxford. https://global.oup.com/academic/product/measuring-metabolic-rates-9780195310610?cc=us&lang=en& DOI:  10.1093/acprof:oso/9780195310610.001.0001
  21. 21.
    McLean JA, Tobin G (2007) Animal and human calorimetry. Cambridge University Press, CambridgeGoogle Scholar
  22. 22.
    Kaiyala KJ, Ramsay DS (2011) Direct animal calorimetry, the underused gold standard for quantifying the fire of life. Comp Biochem Physiol A Mol Integr Physiol 158(3):252–264. doi: 10.1016/j.cbpa.2010.04.013 CrossRefPubMedGoogle Scholar
  23. 23.
    Lusk G (1928) The elements of the science of nutrition, 4th edn. W.B. Saunders Company, Philadelphia, PAGoogle Scholar
  24. 24.
    Zuntz, N. 1847-1920. (1901). Studien zu einer Physiologie des Marsches: von Zuntz und Schumburg. Berlin: Hirschwald. pp 1847–1920Google Scholar
  25. 25.
    Maloney SK, Fuller A, Mitchell D, Gordon C, Overton JM (2014) Translating animal model research: does it matter that our rodents are cold? Physiology (Bethesda) 29(6):413–420. doi: 10.1152/physiol.00029.2014 Google Scholar
  26. 26.
    Utz JC, Velickovska V, Shmereva A, van Breukelen F (2007) Temporal and temperature effects on the maximum rate of rewarming from hibernation. J Therm Biol 32(5):276–281. doi: 10.1016/j.jtherbio.2007.02.002 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Utz JC, van Breukelen F (2013) Prematurely induced arousal from hibernation alters key aspects of warming in golden-mantled ground squirrels, Callospermophilus lateralis. J Therm Biol 38(8):570–575. doi: 10.1016/j.jtherbio.2013.10.001 CrossRefGoogle Scholar
  28. 28.
    Heuton M, Ayala L, Burg C, Dayton K, McKenna K, Morante A, Puentedura G, Urbina N, Hillyard S, Steinberg S, van Breukelen F (2015) Paradoxical anaerobism in desert pupfish. J Exp Biol 218(Pt 23):3739–3745. doi: 10.1242/jeb.130633 CrossRefPubMedGoogle Scholar
  29. 29.
    van Breukelen F, Martin SL (2015) The hibernation continuum: physiological and molecular aspects of metabolic plasticity in mammals. Physiology (Bethesda) 30(4):273–281. doi: 10.1152/physiol.00010.2015 Google Scholar
  30. 30.
    Kaiyala KJ (2014) What does indirect calorimetry really tell us? Mol Metab 3(4):340–341. doi: 10.1016/j.molmet.2014.03.005 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Blaxter K (1989) Energy metabolism in animals and man. Cambridge University Press, CambridgeGoogle Scholar
  32. 32.
    Tschop MH, Speakman JR, Arch JR, Auwerx J, Bruning JC, Chan L, Eckel RH, Farese RV Jr, Galgani JE, Hambly C, Herman MA, Horvath TL, Kahn BB, Kozma SC, Maratos-Flier E, Muller TD, Munzberg H, Pfluger PT, Plum L, Reitman ML, Rahmouni K, Shulman GI, Thomas G, Kahn CR, Ravussin E (2012) A guide to analysis of mouse energy metabolism. Nat Methods 9(1):57–63. doi: 10.1038/nmeth.1806 CrossRefGoogle Scholar
  33. 33.
    Takahashi N, Li F, Hua K, Deng J, Wang CH, Bowers RR, Bartness TJ, Kim HS, Harp JB (2007) Increased energy expenditure, dietary fat wasting, and resistance to diet-induced obesity in mice lacking renin. Cell Metab 6(6):506–512. doi: 10.1016/j.cmet.2007.10.011 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Sakai K, Agassandian K, Morimoto S, Sinnayah P, Cassell MD, Davisson RL, Sigmund CD (2007) Local production of angiotensin II in the subfornical organ causes elevated drinking. J Clin Invest 117(4):1088–1095. doi: 10.1172/jci31242 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Pharmacology, Center for Hypertension Research, The Obesity Research and Education Initiative, François M. Abboud Cardiovascular Research Center, The Fraternal Order of Eagles’ Diabetes Research CenterUniversity of IowaIowa CityUSA

Personalised recommendations