Skip to main content

Strategic Integration of Multiple Bioinformatics Resources for System Level Analysis of Biological Networks

  • Protocol
  • First Online:
Biological Networks and Pathway Analysis

Abstract

Recent technological advances in genomics allow the production of biological data at unprecedented tera- and petabyte scales. Efficient mining of these vast and complex datasets for the needs of biomedical research critically depends on a seamless integration of the clinical, genomic, and experimental information with prior knowledge about genotype-phenotype relationships. Such experimental data accumulated in publicly available databases should be accessible to a variety of algorithms and analytical pipelines that drive computational analysis and data mining.

We present an integrated computational platform Lynx (Sulakhe et al., Nucleic Acids Res 44:D882–D887, 2016) ( http://lynx.cri.uchicago.edu ), a web-based database and knowledge extraction engine. It provides advanced search capabilities and a variety of algorithms for enrichment analysis and network-based gene prioritization. It gives public access to the Lynx integrated knowledge base (LynxKB) and its analytical tools via user-friendly web services and interfaces. The Lynx service-oriented architecture supports annotation and analysis of high-throughput experimental data. Lynx tools assist the user in extracting meaningful knowledge from LynxKB and experimental data, and in the generation of weighted hypotheses regarding the genes and molecular mechanisms contributing to human phenotypes or conditions of interest. The goal of this integrated platform is to support the end-to-end analytical needs of various translational projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen J et al (2013) Translational biomedical informatics in the cloud: present and future. Biomed Res Int 2013:658925

    PubMed  PubMed Central  Google Scholar 

  2. Payne PR, Embi PJ, Sen CK (2009) Translational informatics: enabling high-throughput research paradigms. Physiol Genomics 39(3):131–140

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ranganathan S et al (2011) Towards big data science in the decade ahead from ten years of InCoB and the 1st ISCB-Asia Joint Conference. BMC Bioinformatics 12(Suppl 13):S1

    Article  PubMed  PubMed Central  Google Scholar 

  4. Boyd LB et al (2011) The caBIG® Life Science Business Architecture model. Bioinformatics 27(10):1429–1435

    Article  CAS  PubMed Central  Google Scholar 

  5. Hillman-Jackson, J., et al. (2012) Using Galaxy to perform large-scale interactive data analyses. Curr Protoc Bioinformatics. Chapter 10: p. Unit10.5.

    Google Scholar 

  6. Schuler R et al (2012) A flexible, open, decentralized system for digital pathology networks. Stud Health Technol Inform 175:29–38

    PubMed  PubMed Central  Google Scholar 

  7. Ideker T, Krogan NJ (2012) Differential network biology. Mol Syst Biol 8:565

    Article  PubMed  PubMed Central  Google Scholar 

  8. Koyutürk M (2010) Algorithmic and analytical methods in network biology. Wiley Interdiscip Rev Syst Biol Med 2(3):277–292

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bandyopadhyay S et al (2010) Rewiring of genetic networks in response to DNA damage. Science 330(6009):1385–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chikina MD et al (2009) Global prediction of tissue-specific gene expression and context-dependent gene networks in Caenorhabditis elegans. PLoS Comput Biol 5(6):e1000417

    Article  PubMed  PubMed Central  Google Scholar 

  11. Myers CL, Troyanskaya OG (2007) Context-sensitive data integration and prediction of biological networks. Bioinformatics 23(17):2322–2330

    Article  CAS  PubMed  Google Scholar 

  12. Sharan R, Ideker T (2006) Modeling cellular machinery through biological network comparison. Nat Biotechnol 24(4):427–433

    Article  CAS  PubMed  Google Scholar 

  13. Takemoto K, Kihara K (2013) Modular organization of cancer signaling networks is associated with patient survivability. Biosystems 113(3):149–154

    Article  CAS  PubMed  Google Scholar 

  14. Ideker T, Sharan R (2008) Protein networks in disease. Genome Res 18(4):644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kiemer L, Cesareni G (2007) Comparative interactomics: comparing apples and pears? Trends Biotechnol 25(10):448–454

    Article  CAS  PubMed  Google Scholar 

  16. Nibbe RK et al (2011) Protein-protein interaction networks and subnetworks in the biology of disease. Wiley Interdiscip Rev Syst Biol Med 3(3):357–367

    Article  CAS  PubMed  Google Scholar 

  17. Blank MC et al (2011) Multiple developmental programs are altered by loss of Zic1 and Zic4 to cause Dandy-Walker malformation cerebellar pathogenesis. Development 138(6):1207–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Beltrao P, Ryan C, Krogan NJ (2012) Comparative interaction networks: bridging genotype to phenotype. Adv Exp Med Biol 751:139–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Black DL, Grabowski PJ (2003) Alternative pre-mRNA splicing and neuronal function. Prog Mol Subcell Biol 31:187–216

    Article  CAS  Google Scholar 

  20. Ellis JD et al (2012) Tissue-specific alternative splicing remodels protein-protein interaction networks. Mol Cell 46(6):884–892

    Article  CAS  Google Scholar 

  21. Greene CS et al (2015) Understanding multicellular function and disease with human tissue-specific networks. Nat Genet 47(6):569–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yap K, Makeyev EV (2013) Regulation of gene expression in mammalian nervous system through alternative pre-mRNA splicing coupled with RNA quality control mechanisms. Mol Cell Neurosci 56:420–428

    Article  CAS  PubMed  Google Scholar 

  23. Biamonti G et al (2014) The alternative splicing side of cancer. Semin Cell Dev Biol 32:30–36

    Article  CAS  PubMed  Google Scholar 

  24. Kaida D, Schneider-Poetsch T, Yoshida M (2012) Splicing in oncogenesis and tumor suppression. Cancer Sci 103(9):1611–1616

    Article  CAS  PubMed  Google Scholar 

  25. Zhang J, Manley JL (2013) Misregulation of pre-mRNA alternative splicing in cancer. Cancer Discov 3(11):1228–1237

    Article  CAS  PubMed  Google Scholar 

  26. Wells QS et al (2013) Whole exome sequencing identifies a causal RBM20 mutation in a large pedigree with familial dilated cardiomyopathy. Circ Cardiovasc Genet 6(4):317–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stallings-Mann M, Radisky D (2007) Matrix metalloproteinase-induced malignancy in mammary epithelial cells. Cells Tissues Organs 185(1–3):104–110

    Article  CAS  PubMed  Google Scholar 

  28. Sumithra B, Saxena U, Das AB (2016) Alternative splicing within the Wnt signaling pathway: role in cancer development. Cell Oncol (Dordr) 39(1):1–13

    Article  CAS  Google Scholar 

  29. Yabas M, Elliott H, Hoyne GF (2016) The role of alternative splicing in the control of immune homeostasis and cellular differentiation. Int J Mol Sci 17(1):3

    Article  Google Scholar 

  30. Schaefer MH et al (2013) Adding protein context to the human protein-protein interaction network to reveal meaningful interactions. PLoS Comput Biol 9(1):e1002860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shao H et al (2013) Systematically studying kinase inhibitor induced signaling network signatures by integrating both therapeutic and side effects. PLoS One 8(12):e80832

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cordero F et al (2012) Large disclosing the nature of computational tools for the analysis of next generation sequencing data. Curr Top Med Chem 12(12):1320–1330

    Article  CAS  PubMed  Google Scholar 

  33. Hong H et al (2013) Critical role of bioinformatics in translating huge amounts of next-generation sequencing data into personalized medicine. Sci China Life Sci 56(2):110–118

    Article  CAS  PubMed  Google Scholar 

  34. Wang S, Xing J (2013) A primer for disease gene prioritization using next-generation sequencing data. Genomics Inform 11(4):191–199

    Article  PubMed  PubMed Central  Google Scholar 

  35. Warde-Farley D et al (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38(Web Server issue):W214–W220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Franceschini A et al (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41(Database issue):D808–D815

    Article  CAS  PubMed  Google Scholar 

  37. Szklarczyk D et al (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39(Database issue):D561–D568

    Article  CAS  PubMed  Google Scholar 

  38. Chen J et al (2009) ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 37(Web Server issue):W305–W311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tranchevent LC et al (2008) ENDEAVOUR update: a web resource for gene prioritization in multiple species. Nucleic Acids Res 36(Web Server issue):W377–W384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sifrim A et al (2013) eXtasy: variant prioritization by genomic data fusion. Nat Methods 10(11):1083–1084

    Article  CAS  PubMed  Google Scholar 

  41. Wu J, Li Y, Jiang R (2014) Integrating multiple genomic data to predict disease-causing nonsynonymous single nucleotide variants in exome sequencing studies. PLoS Genet 10(3):e1004237

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jäger M et al (2014) Jannovar: a java library for exome annotation. Hum Mutat 35(5):548–555

    Article  Google Scholar 

  43. Li MX et al (2012) A comprehensive framework for prioritizing variants in exome sequencing studies of Mendelian diseases. Nucleic Acids Res 40(7):e53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Calabrese C et al (2014) MToolBox: a highly automated pipeline for heteroplasmy annotation and prioritization analysis of human mitochondrial variants in high-throughput sequencing. Bioinformatics 30(21):3115–3117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yao J et al (2014) FamAnn: an automated variant annotation pipeline to facilitate target discovery for family-based sequencing studies. Bioinformatics 30(8):1175–1176

    Article  CAS  Google Scholar 

  46. Li X, Montgomery SB (2013) Detection and impact of rare regulatory variants in human disease. Front Genet 4:67

    PubMed  PubMed Central  Google Scholar 

  47. Matthews LR et al (2001) Identification of potential interaction networks using sequence-based searches for conserved protein-protein interactions or "interologs". Genome Res 11(12):2120–2126

    Article  CAS  PubMed Central  Google Scholar 

  48. Yu H et al (2004) Annotation transfer between genomes: protein-protein interologs and protein-DNA regulogs. Genome Res 14(6):1107–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mewes HW et al (2011) MIPS: curated databases and comprehensive secondary data resources in 2010. Nucleic Acids Res 39(Database issue):D220–D224

    Article  CAS  PubMed  Google Scholar 

  50. St Onge RP et al (2007) Systematic pathway analysis using high-resolution fitness profiling of combinatorial gene deletions. Nat Genet 39(2):199–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bakal C et al (2008) Phosphorylation networks regulating JNK activity in diverse genetic backgrounds. Science 322(5900):453–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lage K et al (2008) A large-scale analysis of tissue-specific pathology and gene expression of human disease genes and complexes. Proc Natl Acad Sci U S A 105(52):20870–20875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zuberi K et al (2013) GeneMANIA prediction server 2013 update. Nucleic Acids Res 41(Web Server issue):W115–W122

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kamburov A et al (2013) The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res 41(Database issue):D793–D800

    Article  CAS  PubMed  Google Scholar 

  55. Niu Y, Otasek D, Jurisica I (2010) Evaluation of linguistic features useful in extraction of interactions from PubMed; application to annotating known, high-throughput and predicted interactions in I2D. Bioinformatics 26(1):111–119

    Article  CAS  PubMed  Google Scholar 

  56. Hu Z et al (2013) VisANT 4.0: Integrative network platform to connect genes, drugs, diseases and therapies. Nucleic Acids Res 41(Web Server issue):W225–W231

    Article  PubMed Central  Google Scholar 

  57. Elefsinioti A et al (2011) Large-scale de novo prediction of physical protein-protein association. Mol Cell Proteomics 10(11):M111–010629

    Article  PubMed  PubMed Central  Google Scholar 

  58. Patil A, Nakai K, Nakamura H (2011) HitPredict: a database of quality assessed protein-protein interactions in nine species. Nucleic Acids Res 39(Database issue):D744–D749

    Article  CAS  PubMed  Google Scholar 

  59. Balaji S et al (2012) IMID: integrated molecular interaction database. Bioinformatics 28(5):747–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wong AK et al (2012) IMP: a multi-species functional genomics portal for integration, visualization and prediction of protein functions and networks. Nucleic Acids Res 40(Web Server issue):W484–W490

    Article  CAS  PubMed Central  Google Scholar 

  61. Tamames J, de Lorenzo V (2010) EnvMine: a text-mining system for the automatic extraction of contextual information. BMC Bioinformatics 11:294

    Article  PubMed  PubMed Central  Google Scholar 

  62. Gerner M et al (2012) BioContext: an integrated text mining system for large-scale extraction and contextualization of biomolecular events. Bioinformatics 28(16):2154–2161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kahn AB et al (2007) SpliceMiner: a high-throughput database implementation of the NCBI Evidence Viewer for microarray splice variant analysis. BMC Bioinformatics 8:75

    Article  PubMed  PubMed Central  Google Scholar 

  64. Thanaraj TA et al (2004) ASD: the Alternative Splicing Database. Nucleic Acids Res 32(Database issue):D64–D69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Latham KE (2006) The Primate Embryo Gene Expression Resource in embryology and stem cell biology. Reprod Fertil Dev 18(8):807–810

    Article  CAS  PubMed  Google Scholar 

  66. Sulakhe D et al (2016) Lynx: a knowledge base and an analytical workbench for integrative medicine. Nucleic Acids Res 44(D1):D882–D887

    Article  CAS  PubMed  Google Scholar 

  67. Lukashin I et al (2011) VISTA Region Viewer (RViewer)--a computational system for prioritizing genomic intervals for biomedical studies. Bioinformatics 27(18):2595–2597

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Xie B, et al (2012) Prediction of candidate genes for neuropsychiatric disorders using feature-based enrichment. Proceedings of the ACM conference on bioinformatics, computational biology and biomedicine, Association for Computing Machinery, pp 564–566

    Google Scholar 

  69. Frazer KA et al (2004) VISTA: computational tools for comparative genomics. Nucleic Acids Res 32(Web Server issue):W273–W279

    Article  CAS  PubMed Central  Google Scholar 

  70. Nitsch D et al (2011) PINTA: a web server for network-based gene prioritization from expression data. Nucleic Acids Res 39(Web Server issue):W334–W338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xie B et al (2015) Disease gene prioritization using network and feature. J Comput Biol 22(4):313–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Xie B, et al (2013) Conditional random field for candidate gene prioritization. Proceedings of the international conference on bioinformatics, computational biology and biomedical informatics, Association for Computing Machinery, p 700

    Google Scholar 

  73. Dubchak I et al (2014) An integrative computational approach for prioritization of genomic variants. PLoS One 9(12):e114903

    Article  PubMed  PubMed Central  Google Scholar 

  74. Nitsch D et al (2010) Candidate gene prioritization by network analysis of differential expression using machine learning approaches. BMC Bioinformatics 11:460

    Article  PubMed  PubMed Central  Google Scholar 

  75. Källberg M et al (2012) Template-based protein structure modeling using the RaptorX web server. Nat Protoc 7(8):1511–1522

    Article  PubMed  PubMed Central  Google Scholar 

  76. Rosenbloom KR et al (2015) The UCSC genome browser database: 2015 update. Nucleic Acids Res 43(Database issue):D670–D681

    Article  CAS  Google Scholar 

  77. Mirzaa GM et al (2014) The developmental brain disorders database (DBDB): a curated neurogenetics knowledge base with clinical and research applications. Am J Med Genet A 164A(6):1503–1511

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D’Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

D’Souza, M. et al. (2017). Strategic Integration of Multiple Bioinformatics Resources for System Level Analysis of Biological Networks. In: Tatarinova, T., Nikolsky, Y. (eds) Biological Networks and Pathway Analysis. Methods in Molecular Biology, vol 1613. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7027-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7027-8_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7025-4

  • Online ISBN: 978-1-4939-7027-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics