Skip to main content

Functional Network Disruptions in Schizophrenia

  • Protocol
  • First Online:
Biological Networks and Pathway Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1613))

Abstract

It has been long recognized that schizophrenia, unlike certain other mental disorders, appears to be delocalized, i.e., difficult to attribute to a dysfunction of a few specific brain areas, and may be better understood as a disruption of brain’s emergent network properties. In this chapter, we focus on topological properties of functional brain networks obtained from fMRI data, and demonstrate that some of those properties can be used as discriminative features of schizophrenia in multivariate predictive setting. While the prior work on schizophrenia networks has been primarily focused on discovering statistically significant differences in network properties, this work extends the prior art by exploring the generalization (prediction) ability of network models for schizophrenia, which is not necessarily captured by such significance tests. Moreover, we show that significant disruption of the topological and spatial structure of functional MRI networks in schizophrenia (a) cannot be explained by a disruption to area-based task-dependent responses, i.e., indeed relates to the emergent properties, (b) is global in nature, affecting most dramatically long-distance correlations, and (c) can be leveraged to achieve high classification accuracy (93%) when discriminating between schizophrenic vs. control subjects based just on a single fMRI experiment using a simple auditory task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friston K, Frith C (1995) Schizophrenia: a disconnection syndrome? Clin Neurosci 3(2):89–97

    CAS  PubMed  Google Scholar 

  2. Stephan K, Friston K, Frith C (2009) Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull 35:509–527. doi:10.1093/schbul/sbn176

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wernicke C (1906) Grundrisse der psychiatrie. Verlag von Georg Thieme, Leipzig

    Google Scholar 

  4. Bleuler E (1911) Dementia praecox or the group of schizophrenias. International Universities Press, New York, NY

    Google Scholar 

  5. Garrity A, Pearlson GD, McKiernan K, Lloyd D, Kiehl K et al (2007) Aberrant “default mode” functional connectivity in schizophrenia. Am J Psychiatry 164:450–457. doi:10.1176/appi.ajp.164.3.450

    Article  PubMed  Google Scholar 

  6. Bassett D, Bullmore E, Verchinski B, Mattay V, Weinberger D et al (2008) Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 28(37):9239–9248. doi:10.1523/jneurosci.1929-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu Y, Liang M, Zhou Y, He Y, Hao Y et al (2008) Disrupted small-world networks in schizophrenia. Brain 131:945–961. doi:10.1093/brain/awn018

    Article  PubMed  Google Scholar 

  8. Eguiluz V, Chialvo D, Cecchi G, Baliki M, Apkarian A (2005) Scale-free functional brain networks. Phys Rev Lett 94:018102

    Article  PubMed  Google Scholar 

  9. Rish I, Cecchi G, Thyreau B, Thirion B, Plaze M, Paillere-Martinot ML, Martelli C, Martinot JL, Poline JB (2013) Schizophrenia as a network disease: disruption of emergent brain function in patients with auditory hallucinations. PLoS One 8(1):e50625. Public Library of Science

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lo A, Chernoff H, Zheng T, Lo SH (2015) Why signifcant variables arent automatically good predictors. Proc Natl Acad Sci U S A 112(45):13892–13897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Plaze M, Bartrs-Faz D, Martinot J, Januel D, Bellivier F et al (2006) Left superior temporal gyrus activation during sentence perception negatively correlates with auditory hallucination severity in schizophrenia patients. Schizophr Res 87(1–3):109–115. doi:10.1016/j.schres.2006.05.005

    Article  Google Scholar 

  12. Cecchi G, Rish I, Thyreau B, Thirion B, Plaze M, et al. (2009) Discriminiative network models of schizophrenia. In: Proc. of NIPS-09

    Google Scholar 

  13. Rish I, Cecchi GA, Heuton K (2012) Schizophrenia classification using fMRI-based functional net-work features. In: Proc. of SPIE Medical Imaging 2012

    Google Scholar 

  14. Woods S (2003) Chlorpromazine equivalent doses for the newer atypical antipsychotics. J Clin Psychiatry 64:663–667

    Article  CAS  PubMed  Google Scholar 

  15. Banerjee O, El Ghaoui L, d’Aspremont A (2008) Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data. J Mach Learn Res 9:485–516

    Google Scholar 

  16. Meyer-Lindenberg A, Poline JB, Kohn P, Holt J, Egan M et al (2001) Evidence for abnormal cor-tical functional connectivity duringworking memory in schizophrenia. Am J Psychiatry 158(11):1809–1817

    Article  CAS  PubMed  Google Scholar 

  17. Zhou Y, Liang M, Tian L, Wang K, Hao Y et al (2007) Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophr Res 97:194–205. doi:10.1016/j.schres.2007.05.029

    Article  PubMed  Google Scholar 

  18. Bluhm R, Miller J, Lanius R, Osuch E, Boksman K et al (2007) Spontaneous low-frequencyuctu-ations in the BOLD signal in schizophrenic patients: anomalies in the default network. Schizophr Bull 33:1004–1012. doi:10.1093/schbul/sbm052

    Article  PubMed  PubMed Central  Google Scholar 

  19. Micheloyannis S, Pachou E, Stam C, Breakspear M, Bitsios P et al (2006) Small-world networks and disturbed functional connectivity in schizophrenia. Schizophr Res 87:60–66. doi:10.1016/j.schres.2006.06.028

    Article  PubMed  Google Scholar 

  20. Whitfield-Gabrieli S, Thermenos H, Milanovic S, Tsuang M, Faraone S et al (2009) Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci U S A 106:1279–1284. doi:10.1073/pnas.0809141106

    Article  CAS  PubMed Central  Google Scholar 

  21. Sui QYJ, Rachakonda S, He H, Gruner W, Pearlson G et al (2011) Altered topological properties of functional network connectivity in schizophrenia during resting state: a small-world brain network study. PLoS One 6:e25423. doi:10.1371/journal.pone.0025423

    Article  PubMed  PubMed Central  Google Scholar 

  22. Friston K, Harrison L, Penny W (2003) Dynamic causal modelling. NeuroImage 19(4):1273–1302. doi:10.1016/s1053-8119(03)00202-7

    Article  CAS  Google Scholar 

  23. Zhang L, Samaras D, Alia-Klein N, Volkow N, Goldstein R (2006) Modeling neuronal interactivity using dynamic bayesian networks. In: Advances in neural information processing systems 18. MIT Press, Cambridge MA, pp 1593–1600

    Google Scholar 

  24. Storkey AJ, Simonotto E, Whalley H, Lawrie S, Murray L et al (2007) Learning structural equa-tion models for fMRI. In: Advances in neural information processing systems 19. MIT Press, Cambridge MA, pp 1329–1336

    Google Scholar 

  25. Kircher T, Oh T, Brammer M, McGuire P (2005) Neural correlates of syntax production in schizophrenia. Br J Psychiatry 186:209–214. doi:10.1192/bjp.186.3.209

    Article  PubMed  Google Scholar 

  26. Benedetti F, Poletti S, Radaelli D, Bernasconi A, Cavallaro R et al (2010) Temporal lobe grey matter volume in schizophrenia is associated with a genetic polymorphism inuencing glycogen synthase kinase 3-β activity. Genes Brain Behav 9:365–371. doi:10.1111/j.1601-183x.2010.00566.x

    Article  CAS  PubMed  Google Scholar 

  27. Lawrie S, Buechel C, Whalley H, Frith C, Friston K et al (2002) Reduced frontotemporal func-tional connectivity in schizophrenia associated with auditory hallucinations. Biol Psychiatry 51:10081011. doi:10.1016/s0006-3223(02)01316-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Rish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Rish, I., Cecchi, G.A. (2017). Functional Network Disruptions in Schizophrenia. In: Tatarinova, T., Nikolsky, Y. (eds) Biological Networks and Pathway Analysis. Methods in Molecular Biology, vol 1613. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7027-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7027-8_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7025-4

  • Online ISBN: 978-1-4939-7027-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics