Skip to main content

Transfection of Cultured Primary Neurons

  • Protocol
  • First Online:
Book cover Stem Cell Technologies in Neuroscience

Part of the book series: Neuromethods ((NM,volume 126))

  • 2429 Accesses

Abstract

The efficient delivery of genes into neurons is a crucial tool for the study of neuronal cell biology as well as for the development of novel therapeutic approaches, such as gene therapy. Over the past years, numerous techniques have been established to deliver genes into cells. These methods can be broadly classified into two main groups: viral based and nonviral methods. The viral methods use viral particles such as adenoviruses, adeno-associated, lentiviruses, and herpes simplex viruses. Nonviral methods can be subdivided into physical and chemical methods. While the first one includes techniques such as electroporation, magnetofection, microinjection, and biolistics, the latter comprises lipofection and calcium phosphate/DNA co-precipitation. Each one of these methods has its own advantages and drawbacks and the choice of a particular method depends on the experimental setting and objective. In this chapter, we summarize the key advantages and disadvantages of various techniques for the gene delivery in primary neurons and neuronal stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Millet LJ, Gillette MU (2012) Over a century of neuron culture: from the hanging drop to microfluidic devices. Yale J Biol Med 85:501–521

    PubMed  PubMed Central  Google Scholar 

  2. Kobayashi M, Kim J-Y, Camarena V, Roehm PC, Chao MV, Wilson AC, Mohr I (2012) A primary neuron culture system for the study of herpes simplex virus latency and reactivation. J Vis Exp pii:3823. doi:10.3791/3823

    Google Scholar 

  3. Silver I, Deas J, Erecińska M (1997) Ion homeostasis in brain cells: differences in intracellular ion responses to energy limitation between cultured neurons and glial cells. Neuroscience 78:589–601. doi:10.1016/S0306-4522(96)00600-8

    Article  CAS  PubMed  Google Scholar 

  4. Bird CW, Gardiner AS, Bolognani F, Tanner DC, Chen C-Y, Lin W-J, Yoo S, Twiss JL, Perrone-Bizzozero N (2013) KSRP modulation of GAP-43 mRNA stability restricts axonal outgrowth in embryonic hippocampal neurons. PLoS One 8:e79255. doi:10.1371/journal.pone.0079255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Moroz LL, Kohn AB (2013) Single-neuron transcriptome and methylome sequencing for epigenomic analysis of aging. Methods Mol Biol 1048:323–352. doi:10.1007/978-1-62703-556-9_21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gaven F, Marin P, Claeysen S (2014) Primary culture of mouse dopaminergic neurons. J Vis Exp 91:e51751. doi:10.3791/51751

    Google Scholar 

  7. Ray B, Chopra N, Long JM, Lahiri DK (2014) Human primary mixed brain cultures: preparation, differentiation, characterization and application to neuroscience research. Mol Brain 7:63. doi:10.1186/s13041-014-0063-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Brelstaff J, Ossola B, Neher JJ, Klingstedt T, Nilsson KPR, Goedert M, Spillantini MG, Tolkovsky AM (2015) The fluorescent pentameric oligothiophene pFTAA identifies filamentous tau in live neurons cultured from adult P301S tau mice. Front Neurosci 9:184. doi:10.3389/fnins.2015.00184

    Article  PubMed  PubMed Central  Google Scholar 

  9. Harrill JA, Chen H, Streifel KM, Yang D, Mundy WR, Lein PJ (2015) Ontogeny of biochemical, morphological and functional parameters of synaptogenesis in primary cultures of rat hippocampal and cortical neurons. Mol Brain 8:10. doi:10.1186/s13041-015-0099-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Sendrowski K, Sobaniec W, Stasiak-Barmuta A, Sobaniec P, Popko J (2015) Study of the protective effects of nootropic agents against neuronal damage induced by amyloid-beta (fragment 25-35) in cultured hippocampal neurons. Pharmacol Rep 67:326–331. doi:10.1016/j.pharep.2014.09.013

    Article  CAS  PubMed  Google Scholar 

  11. Giordano G, Costa LG (2011) Primary neurons in culture and neuronal cell lines for in vitro neurotoxicological studies. Methods Mol Biol 758:13–27. doi:10.1007/978-1-61779-170-3_2

    Article  CAS  PubMed  Google Scholar 

  12. Capela JP, da Costa AS, Costa VM, Ruscher K, Fernandes E, Bastos Mde L, Dirnagl U, Meisel A, Carvalho F (2013) The neurotoxicity of hallucinogenic amphetamines in primary cultures of hippocampal neurons. Neurotoxicology 34:254–263. doi:10.1016/j.neuro.2012.09.005

    Article  CAS  PubMed  Google Scholar 

  13. Vilela LR, Gobira PH, Viana TG, Medeiros DC, Ferreira-Vieira TH, Doria JG, Rodrigues F, Aguiar DC, Pereira GS, Massessini AR, Ribeiro FM, de Oliveira ACP, Moraes MFD, Moreira FA (2015) Enhancement of endocannabinoid signaling protects against cocaine-induced neurotoxicity. Toxicol Appl Pharmacol 286:178–187. doi:10.1016/j.taap.2015.04.013

    Article  CAS  PubMed  Google Scholar 

  14. Yang N, Ng YH, Pang ZP, Südhof TC, Wernig M (2011) Induced neuronal cells: how to make and define a neuron. Cell Stem Cell 9:517–525. doi:10.1016/j.stem.2011.11.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bailey JA, Lahiri DK (2006) Neuronal differentiation is accompanied by increased levels of SNAP-25 protein in fetal rat primary cortical neurons: implications in neuronal plasticity and Alzheimer’s disease. Ann N Y Acad Sci 1086:54–65. doi:10.1196/annals.1377.001

    Article  CAS  PubMed  Google Scholar 

  16. Yang J, Ruchti E, Petit J-M, Jourdain P, Grenningloh G, Allaman I, Magistretti PJ (2014) Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. Proc Natl Acad Sci U S A 111:12228–12233. doi:10.1073/pnas.1322912111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. May PC, Boggs LN, Fuson KS (1993) Neurotoxicity of human amylin in rat primary hippocampal cultures: similarity to Alzheimer’s disease amyloid-? Neurotoxicity. J Neurochem 61:2330–2333. doi:10.1111/j.1471-4159.1993.tb07480.x

    Article  CAS  PubMed  Google Scholar 

  18. Murphy DD, Rueter SM, Trojanowski JQ, Lee VM-Y (2000) Synucleins are developmentally expressed, and alpha -Synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci 20:3214–3220

    CAS  PubMed  Google Scholar 

  19. Krantic S, Isorce N, Mechawar N, Davoli MA, Vignault E, Albuquerque M, Chabot J-G, Moyse E, Chauvin J-P, Aubert I, McLaurin J, Quirion R (2012) Hippocampal GABAergic neurons are susceptible to amyloid-β toxicity in vitro and are decreased in number in the Alzheimer’s disease TgCRND8 mouse model. J Alzheimers Dis 29:293–308. doi:10.3233/JAD-2011-110830

    CAS  PubMed  Google Scholar 

  20. Popugaeva E, Pchitskaya E, Speshilova A, Alexandrov S, Zhang H, Vlasova O, Bezprozvanny I (2015) STIM2 protects hippocampal mushroom spines from amyloid synaptotoxicity. Mol Neurodegener 10:37. doi:10.1186/s13024-015-0034-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Li XJ, Valadez AV, Zuo P, Nie Z (2012) Microfluidic 3D cell culture: potential application for tissue-based bioassays. Bioanalysis 4:1509–1525. doi:10.4155/bio.12.133

    Article  CAS  PubMed  Google Scholar 

  22. Jacobs BM (2015) A dangerous method? The use of induced pluripotent stem cells as a model for schizophrenia. Schizophr Res 168:563–568. doi:10.1016/j.schres.2015.07.005

    Article  PubMed  Google Scholar 

  23. Kanzaki S (2014) Gene and drug delivery system and potential treatment into inner ear for protection and regeneration. Front Pharmacol 5:222. doi:10.3389/fphar.2014.00222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Parr-Brownlie LC, Bosch-Bouju C, Schoderboeck L, Sizemore RJ, Abraham WC, Hughes SM (2015) Lentiviral vectors as tools to understand central nervous system biology in mammalian model organisms. Front Mol Neurosci 8:1–12. doi:10.3389/fnmol.2015.00014

    Article  Google Scholar 

  25. De la Rossa A, Jabaudon D (2015) In vivo rapid gene delivery into postmitotic neocortical neurons using iontoporation. Nat Protoc 10:25–32. doi:10.1038/nprot.2015.001

    Article  PubMed  CAS  Google Scholar 

  26. Chen X, Zhao X, Zhang M, Wei S (2015) Nuclear respiratory factor-2α and adenosine triphosphate synapses in rat primary cortical neuron cultures: the key role of adenosine monophosphate-activated protein kinase. Mol Med Rep. doi:10.3892/mmr.2015.4140

    Google Scholar 

  27. Del Pino J, Frejo MT, Baselga MJA, Capo MA, Moyano P, García JM, Díaz MJ (2015) Neuroprotective or neurotoxic effects of 4-aminopyridine mediated by KChIP1 regulation through adjustment of Kv 4.3 potassium channels expression and GABA-mediated transmission in primary hippocampal cells. Toxicology 333:107–117. doi:10.1016/j.tox.2015.04.013

    Article  PubMed  CAS  Google Scholar 

  28. Sato T, Ishikawa M, Mochizuki M, Ohta M, Ohkura M, Nakai J, Takamatsu N, Yoshioka K (2015) JSAP1/JIP3 and JLP regulate kinesin-1-dependent axonal transport to prevent neuronal degeneration. Cell Death Differ 22:1260–1274. doi:10.1038/cdd.2014.207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Oh S-M, Chang M-Y, Song J-J, Rhee Y-H, Joe E-H, Lee H-S, Yi S-H, Lee S-H (2015) Combined Nurr1 and Foxa2 roles in the therapy of Parkinson’s disease. EMBO Mol Med 7:510–525. doi:10.15252/emmm.201404610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Klein SM, Behrstock S, McHugh J, Hoffmann K, Wallace K, Suzuki M, Aebischer P, Svendsen CN (2005) GDNF delivery using human neural progenitor cells in a rat model of ALS. Hum Gene Ther 16:509–521. doi:10.1089/hum.2005.16.509

    Article  CAS  PubMed  Google Scholar 

  31. Mariotti V, Greco SJ, Mohan RD, Nahas GR, Rameshwar P (2014) Stem cell in alternative treatments for brain tumors: potential for gene delivery. Mol Cell Ther 2:24. doi:10.1186/2052-8426-2-24

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kim YC, Shim JW, Oh YJ, Son H, Lee YS, Lee SH (2002) Co-transfection with cDNA encoding the Bcl family of anti-apoptotic proteins improves the efficiency of transfection in primary fetal neural stem cells. J Neurosci Methods 117:153–158

    Article  CAS  PubMed  Google Scholar 

  33. Washbourne P, McAllister AK (2002) Techniques for gene transfer into neurons. Curr Opin Neurobiol 12:566–573. doi:10.1016/S0959-4388(02)00365-3

    Article  CAS  PubMed  Google Scholar 

  34. Grimm D, Kay MA (2003) From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy. Curr Gene Ther 3:281–304

    Article  CAS  PubMed  Google Scholar 

  35. Lentz TB, Gray SJ, Samulski RJ (2012) Viral vectors for gene delivery to the central nervous system. Neurobiol Dis 48:179–188. doi:10.1016/j.nbd.2011.09.014

    Article  CAS  PubMed  Google Scholar 

  36. Kim TK, Eberwine JH (2010) Mammalian cell transfection: the present and the future. Anal Bioanal Chem 397:3173–3178. doi:10.1007/s00216-010-3821-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ojala DS, Amara DP, Schaffer DV (2015) Adeno-associated virus vectors and neurological gene therapy. Neuroscientist 21:84–98. doi:10.1177/1073858414521870

    Article  PubMed  CAS  Google Scholar 

  38. Parr-Brownlie LC, Bosch-Bouju C, Schoderboeck L, Sizemore RJ, Abraham WC, Hughes SM (2015) Lentiviral vectors as tools to understand central nervous system biology in mammalian model organisms. Front Mol Neurosci 8:14. doi:10.3389/fnmol.2015.00014

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jerusalinsky D, Baez MV, Epstein AL (2012) Herpes simplex virus type 1-based amplicon vectors for fundamental research in neurosciences and gene therapy of neurological diseases. J Physiol Paris 106:2–11. doi:10.1016/j.jphysparis.2011.11.003

    Article  PubMed  Google Scholar 

  40. Wold WSM, Toth K (2013) Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Curr Gene Ther 13:421–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lusky M, Christ M, Rittner K, Dieterle A, Dreyer D, Mourot B, Schultz H, Stoeckel F, Pavirani A, Mehtali M (1998) In vitro and in vivo biology of recombinant adenovirus vectors with E1, E1/E2A, or E1/E4 deleted. J Virol 72:2022–2032

    CAS  PubMed  PubMed Central  Google Scholar 

  42. O’Neal WK, Zhou H, Morral N, Aguilar-Cordova E, Pestaner J, Langston C, Mull B, Wang Y, Beaudet AL, Lee B (1998) Toxicological comparison of E2a-deleted and first-generation adenoviral vectors expressing alpha1-antitrypsin after systemic delivery. Hum Gene Ther 9:1587–1598. doi:10.1089/hum.1998.9.11-1587

    Article  PubMed  Google Scholar 

  43. Andrews JL, Kadan MJ, Gorziglia MI, Kaleko M, Connelly S (2001) Generation and characterization of E1/E2a/E3/E4-deficient adenoviral vectors encoding human factor VIII. Mol Ther 3:329–336. doi:10.1006/mthe.2001.0264

    Article  CAS  PubMed  Google Scholar 

  44. Morsy MA, Caskey CT (1999) Expanded-capacity adenoviral vectors--the helper-dependent vectors. Mol Med Today 5:18–24

    Article  CAS  PubMed  Google Scholar 

  45. Lowenstein PR, Mandel RJ, Xiong W-D, Kroeger K, Castro MG (2007) Immune responses to adenovirus and adeno-associated vectors used for gene therapy of brain diseases: the role of immunological synapses in understanding the cell biology of neuroimmune interactions. Curr Gene Ther 7:347–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Capasso C, Garofalo M, Hirvinen M, Cerullo V (2014) The evolution of adenoviral vectors through genetic and chemical surface modifications. Viruses 6:832–855. doi:10.3390/v6020832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dong X, Zong S, Witting A, Lindenberg KS, Kochanek S, Huang B (2012) Adenovirus vector-based in vitro neuronal cell model for Huntington’s disease with human disease-like differential aggregation and degeneration. J Gene Med 14:468–481. doi:10.1002/jgm.2641

    Article  CAS  PubMed  Google Scholar 

  48. Lopez-Gordo E, Podgorski II, Downes N, Alemany R (2014) Circumventing antivector immunity: potential use of nonhuman adenoviral vectors. Hum Gene Ther 25:285–300. doi:10.1089/hum.2013.228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Simão D, Pinto C, Fernandes P, Peddie CJ, Piersanti S, Collinson LM, Salinas S, Saggio I, Schiavo G, Kremer EJ, Brito C, Alves PM (2015) Evaluation of helper-dependent canine adenovirus vectors in a 3D human CNS model. Gene Ther. doi:10.1038/gt.2015.75

    PubMed Central  Google Scholar 

  50. Büning H, Perabo L, Coutelle O, Quadt-Humme S, Hallek M (2008) Recent developments in adeno-associated virus vector technology. J Gene Med 10:717–733. doi:10.1002/jgm.1205

    Article  PubMed  CAS  Google Scholar 

  51. Vasileva A, Jessberger R (2005) Precise hit: adeno-associated virus in gene targeting. Nat Rev Microbiol 3:837–847. doi:10.1038/nrmicro1266

    Article  CAS  PubMed  Google Scholar 

  52. Rabinowitz JE, Rolling F, Li C, Conrath H, Xiao W, Xiao X, Samulski RJ (2002) Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 76:791–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gao G-P, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM (2002) Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci U S A 99:11854–11859. doi:10.1073/pnas.182412299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhong L, Li B, Mah CS, Govindasamy L, Agbandje-McKenna M, Cooper M, Herzog RW, Zolotukhin I, Warrington KH, Weigel-Van Aken KA, Hobbs JA, Zolotukhin S, Muzyczka N, Srivastava A (2008) Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc Natl Acad Sci U S A 105:7827–7832. doi:10.1073/pnas.0802866105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Petrs-Silva H, Dinculescu A, Li Q, Min S-H, Chiodo V, Pang J-J, Zhong L, Zolotukhin S, Srivastava A, Lewin AS, Hauswirth WW (2009) High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors. Mol Ther 17:463–471. doi:10.1038/mt.2008.269

    Article  CAS  PubMed  Google Scholar 

  56. Markusic DM, Herzog RW, Aslanidi GV, Hoffman BE, Li B, Li M, Jayandharan GR, Ling C, Zolotukhin I, Ma W, Zolotukhin S, Srivastava A, Zhong L (2010) High-efficiency transduction and correction of murine hemophilia B using AAV2 vectors devoid of multiple surface-exposed tyrosines. Mol Ther 18:2048–2056. doi:10.1038/mt.2010.172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Martino AT, Basner-Tschakarjan E, Markusic DM, Finn JD, Hinderer C, Zhou S, Ostrov DA, Srivastava A, Ertl HCJ, Terhorst C, High KA, Mingozzi F, Herzog RW (2013) Engineered AAV vector minimizes in vivo targeting of transduced hepatocytes by capsid-specific CD8+ T cells. Blood 121:2224–2233. doi:10.1182/blood-2012-10-460733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zolotukhin I, Luo D, Gorbatyuk O, Hoffman B, Warrington K, Herzog R, Harrison J, Cao O (2013) Improved adeno-associated viral gene transfer to murine glioma. J Genet Syndr Gene Ther. doi:10.4172/2157-7412.1000133

    PubMed  PubMed Central  Google Scholar 

  59. Jang J-H, Koerber JT, Kim J-S, Asuri P, Vazin T, Bartel M, Keung A, Kwon I, Park KI, Schaffer DV (2011) An evolved adeno-associated viral variant enhances gene delivery and gene targeting in neural stem cells. Mol Ther 19:667–675. doi:10.1038/mt.2010.287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim J-S, Chu HS, Park KI, Won J-I, Jang J-H (2012) Elastin-like polypeptide matrices for enhancing adeno-associated virus-mediated gene delivery to human neural stem cells. Gene Ther 19:329–337. doi:10.1038/gt.2011.84

    Article  CAS  PubMed  Google Scholar 

  61. Kotterman MA, Vazin T, Schaffer DV (2015) Enhanced selective gene delivery to neural stem cells in vivo by an adeno-associated viral variant. Development 142:1885–1892. doi:10.1242/dev.115253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chai X, Kong W, Liu L, Yu W, Zhang Z, Sun Y (2014) A viral vector expressing hypoxia-inducible factor 1 alpha inhibits hippocampal neuronal apoptosis. Neural Regen Res 9:1145–1153. doi:10.4103/1673-5374.135317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Duan D, Yue Y, Yan Z, Engelhardt JF (2000) A new dual-vector approach to enhance recombinant adeno-associated virus-mediated gene expression through intermolecular cis activation. Nat Med 6:595–598. doi:10.1038/75080

    Article  CAS  PubMed  Google Scholar 

  64. Nakai H, Storm TA, Kay MA (2000) Increasing the size of rAAV-mediated expression cassettes in vivo by intermolecular joining of two complementary vectors. Nat Biotechnol 18:527–532. doi:10.1038/75390

    Article  CAS  PubMed  Google Scholar 

  65. Sun L, Li J, Xiao X (2000) Overcoming adeno-associated virus vector size limitation through viral DNA heterodimerization. Nat Med 6:599–602. doi:10.1038/75087

    Article  CAS  PubMed  Google Scholar 

  66. Gompf HS, Budygin EA, Fuller PM, Bass CE (2015) Targeted genetic manipulations of neuronal subtypes using promoter-specific combinatorial AAVs in wild-type animals. Front Behav Neurosci 9:152. doi:10.3389/fnbeh.2015.00152

    Article  PubMed  PubMed Central  Google Scholar 

  67. Denning W, Das S, Guo S, Xu J, Kappes JC, Hel Z (2013) Optimization of the transductional efficiency of lentiviral vectors: effect of sera and polycations. Mol Biotechnol 53:308–314. doi:10.1007/s12033-012-9528-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Naldini L, Blömer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267

    Article  CAS  PubMed  Google Scholar 

  69. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, Naldini L (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Li M, Husic N, Lin Y, Snider BJ (2012) Production of lentiviral vectors for transducing cells from the central nervous system. J Vis Exp:e4031. doi: 10.3791/4031

  71. Liu K-C, Lin B-S, Gao A-D, Ma H-Y, Zhao M, Zhang R, Yan H-H, Yi X-F, Lin S-J, Que J-W, Lan X-P (2014) Integrase-deficient lentivirus: opportunities and challenges for human gene therapy. Curr Gene Ther 14:352–364

    Article  PubMed  CAS  Google Scholar 

  72. Verhoeyen E, Cosset F-L (2004) Surface-engineering of lentiviral vectors. J Gene Med 6(Suppl 1):S83–S94. doi:10.1002/jgm.494

    Article  CAS  PubMed  Google Scholar 

  73. Lei Y, Joo K-I, Wang P (2009) Engineering fusogenic molecules to achieve targeted transduction of enveloped lentiviral vectors. J Biol Eng 3:8. doi:10.1186/1754-1611-3-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Zhang X-Y, Kutner RH, Bialkowska A, Marino MP, Klimstra WB, Reiser J (2010) Cell-specific targeting of lentiviral vectors mediated by fusion proteins derived from sindbis virus, vesicular stomatitis virus, or avian sarcoma/leukosis virus. Retrovirology 7:3. doi:10.1186/1742-4690-7-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Lei Y, Joo K-I, Zarzar J, Wong C, Wang P (2010) Targeting lentiviral vector to specific cell types through surface displayed single chain antibody and fusogenic molecule. Virol J 7:35. doi:10.1186/1743-422X-7-35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Kato S, Kobayashi K, Kobayashi K (2014) Improved transduction efficiency of a lentiviral vector for neuron-specific retrograde gene transfer by optimizing the junction of fusion envelope glycoprotein. J Neurosci Methods 227:151–158. doi:10.1016/j.jneumeth.2014.02.015

    Article  CAS  PubMed  Google Scholar 

  77. Eleftheriadou I, Trabalza A, Ellison S, Gharun K, Mazarakis N (2014) Specific retrograde transduction of spinal motor neurons using lentiviral vectors targeted to presynaptic NMJ receptors. Mol Ther 22:1285–1298. doi:10.1038/mt.2014.49

    Article  CAS  PubMed Central  Google Scholar 

  78. Yang P (2012) Lentiviral vector mediates exogenous gene expression in adult rat DRG following peripheral nerve remote delivery. J Mol Neurosci 47:173–179. doi:10.1007/s12031-012-9710-z

    Article  CAS  PubMed  Google Scholar 

  79. Palfi S, Gurruchaga JM, Ralph GS, Lepetit H, Lavisse S, Buttery PC, Watts C, Miskin J, Kelleher M, Deeley S, Iwamuro H, Lefaucheur JP, Thiriez C, Fenelon G, Lucas C, Brugières P, Gabriel I, Abhay K, Drouot X, Tani N, Kas A, Ghaleh B, Le Corvoisier P, Dolphin P, Breen DP, Mason S, Guzman NV, Mazarakis ND, Radcliffe PA, Harrop R, Kingsman SM, Rascol O, Naylor S, Barker RA, Hantraye P, Remy P, Cesaro P, Mitrophanous KA (2014) Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet 383:1138–1146. doi:10.1016/S0140-6736(13)61939-X

    Article  CAS  PubMed  Google Scholar 

  80. Simonato M, Manservigi R, Marconi P, Glorioso J (2000) Gene transfer into neurones for the molecular analysis of behaviour: focus on herpes simplex vectors. Trends Neurosci 23:183–190

    Article  CAS  PubMed  Google Scholar 

  81. Epstein AL (2009) HSV-1-derived amplicon vectors: recent technological improvements and remaining difficulties--a review. Mem Inst Oswaldo Cruz 104:399–410

    Article  CAS  PubMed  Google Scholar 

  82. Rath P, Shi H, Maruniak JA, Litofsky NS, Maria BL, Kirk MD (2009) Stem cells as vectors to deliver HSV/tk gene therapy for malignant gliomas. Curr Stem Cell Res Ther 4:44–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Friedman AK, Han M-H (2015) The use of herpes simplex virus in ex vivo slice culture. Curr Protoc Neurosci 72:4.36.1–4.36.7. doi:10.1002/0471142301.ns0436s72

    Article  Google Scholar 

  84. Mertz KD, Weisheit G, Schilling K, Lüers GH (2002) Electroporation of primary neural cultures: a simple method for directed gene transfer in vitro. Histochem Cell Biol 118:501–506. doi:10.1007/s00418-002-0473-4

    CAS  PubMed  Google Scholar 

  85. Inoue T, Krumlauf R (2001) An impulse to the brain—using in vivo electroporation. Nat Neurosci 4:1156–1158

    Article  CAS  PubMed  Google Scholar 

  86. Karra D, Dahm R (2010) Transfection techniques for neuronal cells. J Neurosci 30:6171–6177. doi:10.1523/JNEUROSCI.0183-10.2010

    Article  CAS  PubMed  Google Scholar 

  87. Kitamura K, Judkewitz B, Kano M, Denk W, Häusser M (2008) Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo. Nat Methods 5:61–67. doi:10.1038/nmeth1150

    Article  CAS  PubMed  Google Scholar 

  88. Tanaka M, Yanagawa Y, Hirashima N (2009) Transfer of small interfering RNA by single-cell electroporation in cerebellar cell cultures. J Neurosci Methods 178:80–86. doi:10.1016/j.jneumeth.2008.11.025

    Article  CAS  PubMed  Google Scholar 

  89. Judkewitz B, Rizzi M, Kitamura K, Häusser M (2009) Targeted single-cell electroporation of mammalian neurons in vivo. Nat Protoc 4:862–869. doi:10.1038/nprot.2009.56

    Article  CAS  PubMed  Google Scholar 

  90. Kabakov AY, Lisman JE (2015) Catalytically dead αCaMKII K42M mutant acts as a dominant negative in the control of synaptic strength. PLoS One 10:e0123718. doi:10.1371/journal.pone.0123718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Pagès S, Cane M, Randall J, Capello L, Holtmaat A (2015) Single cell electroporation for longitudinal imaging of synaptic structure and function in the adult mouse neocortex in vivo. Front Neuroanat 9:36. doi:10.3389/fnana.2015.00036

    PubMed  PubMed Central  Google Scholar 

  92. Leclere PG, Panjwani A, Docherty R, Berry M, Pizzey J, Tonge DA (2005) Effective gene delivery to adult neurons by a modified form of electroporation. J Neurosci Methods 142:137–143. doi:10.1016/j.jneumeth.2004.08.012

    Article  CAS  PubMed  Google Scholar 

  93. Gärtner A, Collin L, Lalli G (2006) Nucleofection of primary neurons. Methods Enzymol 406:374–388. doi:10.1016/S0076-6879(06)06027-7

    Article  PubMed  CAS  Google Scholar 

  94. Kirton HM, Pettinger L, Gamper N (2013) Transient overexpression of genes in neurons using nucleofection. Methods Mol Biol 998:55–64. doi:10.1007/978-1-62703-351-0_4

    Article  CAS  PubMed  Google Scholar 

  95. Kittler JT, Thomas P, Tretter V, Bogdanov YD, Haucke V, Smart TG, Moss SJ (2004) Huntingtin-associated protein 1 regulates inhibitory synaptic transmission by modulating gamma-aminobutyric acid type A receptor membrane trafficking. Proc Natl Acad Sci U S A 101:12736–12741. doi:10.1073/pnas.0401860101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Han Q-J, Gao N-N, Guo-QiangMa ZZ-N, Yu W-H, Pan J, Wang Q, Zhang X, Bao L (2013) IPP5 inhibits neurite growth in primary sensory neurons by maintaining TGF-β/Smad signaling. J Cell Sci 126:542–553. doi:10.1242/jcs.114280

    Article  CAS  PubMed  Google Scholar 

  97. Bertram B, Wiese S, von Holst A (2012) High-efficiency transfection and survival rates of embryonic and adult mouse neural stem cells achieved by electroporation. J Neurosci Methods 209:420–427. doi:10.1016/j.jneumeth.2012.06.024

    Article  CAS  PubMed  Google Scholar 

  98. McCall J, Nicholson L, Weidner N, Blesch A (2012) Optimization of adult sensory neuron electroporation to study mechanisms of neurite growth. Front Mol Neurosci 5:11. doi:10.3389/fnmol.2012.00011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zeitelhofer M, Vessey JP, Xie Y, Tübing F, Thomas S, Kiebler M, Dahm R (2007) High-efficiency transfection of mammalian neurons via nucleofection. Nat Protoc 2:1692–1704. doi:10.1038/nprot.2007.226

    Article  CAS  PubMed  Google Scholar 

  100. Hutson TH, Buchser WJ, Bixby JL, Lemmon VP, Moon LDF (2011) Optimization of a 96-well electroporation assay for postnatal rat CNS neurons suitable for cost-effective medium-throughput screening of genes that promote neurite outgrowth. Front Mol Neurosci 4:55. doi:10.3389/fnmol.2011.00055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Barry G, Briggs JA, Vanichkina DP, Poth EM, Beveridge NJ, Ratnu VS, Nayler SP, Nones K, Hu J, Bredy TW, Nakagawa S, Rigo F, Taft RJ, Cairns MJ, Blackshaw S, Wolvetang EJ, Mattick JS (2013) The long non-coding RNA Gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing. Mol Psychiatry 19:486–494. doi:10.1038/mp.2013.45

    Article  PubMed  CAS  Google Scholar 

  102. Chen Y, Wang B, Liu D, Li JJ, Xue Y, Sakata K, Zhu L, Heldt SA, Xu H, Liao F-F (2014) Hsp90 chaperone inhibitor 17-AAG attenuates Aβ-induced synaptic toxicity and memory impairment. J Neurosci 34:2464–2470. doi:10.1523/JNEUROSCI.0151-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Krüger A, Gänsbacher B, Plank C (2002) Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 9:102–109. doi:10.1038/sj.gt.3301624

    Article  CAS  PubMed  Google Scholar 

  104. Plank C, Schillinger U, Scherer F, Bergemann C, Rémy J-S, Krötz F, Anton M, Lausier J, Rosenecker J (2003) The magnetofection method: using magnetic force to enhance gene delivery. Biol Chem 384:737–747. doi:10.1515/BC.2003.082

    Article  CAS  PubMed  Google Scholar 

  105. Plank C, Zelphati O, Mykhaylyk O (2011) Magnetically enhanced nucleic acid delivery. Ten years of magnetofection-progress and prospects. Adv Drug Deliv Rev 63:1300–1331. doi:10.1016/j.addr.2011.08.002

    Article  CAS  PubMed  Google Scholar 

  106. Underhill SM, Wheeler DS, Li M, Watts SD, Ingram SL, Amara SG (2014) Amphetamine modulates excitatory neurotransmission through endocytosis of the glutamate transporter EAAT3 in dopamine neurons. Neuron 83:404–416. doi:10.1016/j.neuron.2014.05.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Buerli T, Pellegrino C, Baer K, Lardi-Studler B, Chudotvorova I, Fritschy J-M, Medina I, Fuhrer C (2007) Efficient transfection of DNA or shRNA vectors into neurons using magnetofection. Nat Protoc 2:3090–3101. doi:10.1038/nprot.2007.445

    Article  CAS  PubMed  Google Scholar 

  108. Alavian KN, Li H, Collis L, Bonanni L, Zeng L, Sacchetti S, Lazrove E, Nabili P, Flaherty B, Graham M, Chen Y, Messerli SM, Mariggio MA, Rahner C, McNay E, Shore GC, Smith PJS, Hardwick JM, Jonas EA (2011) Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase. Nat Cell Biol 13:1224–1233. doi:10.1038/ncb2330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Charrier C, Joshi K, Coutinho-Budd J, Kim J-E, Lambert N, de Marchena J, Jin W-L, Vanderhaeghen P, Ghosh A, Sassa T, Polleux F (2012) Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell 149:923–935. doi:10.1016/j.cell.2012.03.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mairet-Coello G, Courchet J, Pieraut S, Courchet V, Maximov A, Polleux F (2013) The CAMKK2-AMPK kinase pathway mediates the synaptotoxic effects of Aβ oligomers through tau phosphorylation. Neuron 78:94–108. doi:10.1016/j.neuron.2013.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Terenzio M, Golding M, Russell MRG, Wicher KB, Rosewell I, Spencer-Dene B, Ish-Horowicz D, Schiavo G (2014) Bicaudal-D1 regulates the intracellular sorting and signalling of neurotrophin receptors. EMBO J 33:1582–1598. doi:10.15252/embj.201387579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang R, Palavicini JP, Wang H, Maiti P, Bianchi E, Xu S, Lloyd BN, Dawson-Scully K, Kang DE, Lakshmana MK (2014) RanBP9 overexpression accelerates loss of dendritic spines in a mouse model of Alzheimer’s disease. Neurobiol Dis 69:169–179. doi:10.1016/j.nbd.2014.05.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fallini C, Bassell GJ, Rossoll W (2010) High-efficiency transfection of cultured primary motor neurons to study protein localization, trafficking, and function. Mol Neurodegener 5:17. doi:10.1186/1750-1326-5-17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Fallini C, Rouanet JP, Donlin-Asp PG, Guo P, Zhang H, Singer RH, Rossoll W, Bassell GJ (2014) Dynamics of survival of motor neuron (SMN) protein interaction with the mRNA-binding protein IMP1 facilitates its trafficking into motor neuron axons. Dev Neurobiol 74:319–332. doi:10.1002/dneu.22111

    Article  CAS  PubMed  Google Scholar 

  115. Fallini C, Bassell GJ, Rossoll W (2012) The ALS disease protein TDP-43 is actively transported in motor neuron axons and regulates axon outgrowth. Hum Mol Genet 21:3703–3718. doi:10.1093/hmg/dds205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sapet C, Laurent N, de Chevigny A, le Gourrierec L, Bertosio E, Zelphati O, Béclin C (2011) High transfection efficiency of neural stem cells with magnetofection. Biotechniques 50:187–189. doi:10.2144/000113628

    CAS  PubMed  Google Scholar 

  117. Pickard MR, Adams CF, Barraud P, Chari DM (2015) Using magnetic nanoparticles for gene transfer to neural stem cells: stem cell propagation method influences outcomes. J Funct Biomater 6:259–276. doi:10.3390/jfb6020259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Restituito S, Couve A, Bawagan H, Jourdain S, Pangalos MN, Calver AR, Freeman KB, Moss SJ (2005) Multiple motifs regulate the trafficking of GABA(B) receptors at distinct checkpoints within the secretory pathway. Mol Cell Neurosci 28:747–756. doi:10.1016/j.mcn.2004.12.006

    Article  CAS  PubMed  Google Scholar 

  119. Bounhar Y, Zhang Y, Goodyer CG, LeBlanc A (2001) Prion protein protects human neurons against Bax-mediated apoptosis. J Biol Chem 276:39145–39149. doi:10.1074/jbc.C100443200

    Article  CAS  PubMed  Google Scholar 

  120. Roucou X, Giannopoulos PN, Zhang Y, Jodoin J, Goodyer CG, LeBlanc A (2005) Cellular prion protein inhibits proapoptotic Bax conformational change in human neurons and in breast carcinoma MCF-7 cells. Cell Death Differ 12:783–795. doi:10.1038/sj.cdd.4401629

    Article  CAS  PubMed  Google Scholar 

  121. Li Z, Gu X, Sun L, Wu S, Liang L, Cao J, Lutz BM, Bekker A, Zhang W, Tao Y-X (2015) Dorsal root ganglion myeloid zinc finger protein 1 contributes to neuropathic pain after peripheral nerve trauma. Pain 156:711–721. doi:10.1097/j.pain.0000000000000103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tsutajima J, Kunitake T, Wakazono Y, Takamiya K (2013) Selective injection system into hippocampus CA1 via monitored theta oscillation. PLoS One 8:e83129. doi:10.1371/journal.pone.0083129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Kole AJ, Knight ERW, Deshmukh M (2011) Activation of apoptosis by cytoplasmic microinjection of cytochrome c. J Vis Exp. doi:10.3791/2773

    PubMed  PubMed Central  Google Scholar 

  124. Kohara K, Kitamura A, Morishima M, Tsumoto T (2001) Activity-dependent transfer of brain-derived neurotrophic factor to postsynaptic neurons. Science 291:2419–2423. doi:10.1126/science.1057415

    Article  CAS  PubMed  Google Scholar 

  125. Kittler JT, Wang J, Connolly CN, Vicini S, Smart TG, Moss SJ (2000) Analysis of GABAA receptor assembly in mammalian cell lines and hippocampal neurons using gamma 2 subunit green fluorescent protein chimeras. Mol Cell Neurosci 16:440–452. doi:10.1006/mcne.2000.0882

    Article  CAS  PubMed  Google Scholar 

  126. Zhang Y, Yu L-C (2008) Single-cell microinjection technology in cell biology. Bioessays 30:606–610. doi:10.1002/bies.20759

    Article  PubMed  Google Scholar 

  127. Lo DC (2001) Neuronal transfection using particle-mediated gene transfer. Curr Protoc Neurosci Chapter 3:Unit 3.15. doi:10.1002/0471142301.ns0315s05

    CAS  PubMed  Google Scholar 

  128. Dib-Hajj SD, Choi JS, Macala LJ, Tyrrell L, Black JA, Cummins TR, Waxman SG (2009) Transfection of rat or mouse neurons by biolistics or electroporation. Nat Protoc 4:1118–1126. doi:10.1038/nprot.2009.90

    Article  CAS  PubMed  Google Scholar 

  129. Klein RM, Wolf ED, Wu R, Sanford JC (1992) High-velocity microprojectiles for delivering nucleic acids into living cells. 1987. Biotechnology 24:384–386

    CAS  PubMed  Google Scholar 

  130. Klein TM, Fromm M, Weissinger A, Tomes D, Schaaf S, Sletten M, Sanford JC (1988) Transfer of foreign genes into intact maize cells with high-velocity microprojectiles. Proc Natl Acad Sci U S A 85:4305–4309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Arsenault J, Nagy A, Henderson JT, O’Brien JA (2014) Regioselective biolistic targeting in organotypic brain slices using a modified gene gun. J Vis Exp:e52148. doi: 10.3791/52148

  132. Gamper N, Shapiro MS (2006) Exogenous expression of proteins in neurons using the biolistic particle delivery system. Methods Mol Biol 337:27–38. doi:10.1385/1-59745-095-2:27

    CAS  PubMed  Google Scholar 

  133. Carta M, Opazo P, Veran J, Athané A, Choquet D, Coussen F, Mulle C (2013) CaMKII-dependent phosphorylation of GluK5 mediates plasticity of kainate receptors. EMBO J 32:496–510. doi:10.1038/emboj.2012.334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Oliveira AF, Yasuda R (2014) Neurofibromin is the major ras inactivator in dendritic spines. J Neurosci 34:776–783. doi:10.1523/JNEUROSCI.3096-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lachance-Touchette P, Choudhury M, Stoica A, Di Cristo G, Cossette P (2014) Single-cell genetic expression of mutant GABAA receptors causing human genetic epilepsy alters dendritic spine and GABAergic bouton formation in a mutation-specific manner. Front Cell Neurosci 8:317. doi:10.3389/fncel.2014.00317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. O’Brien JA, Holt M, Whiteside G, Lummis SC, Hastings MH (2001) Modifications to the hand-held gene gun: improvements for in vitro biolistic transfection of organotypic neuronal tissue. J Neurosci Methods 112:57–64

    Article  PubMed  Google Scholar 

  137. O’Brien JA, Lummis SCR (2006) Biolistic transfection of neuronal cultures using a hand-held gene gun. Nat Protoc 1:977–981. doi:10.1038/nprot.2006.145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Arsenault J, O’Brien JA (2013) Optimized heterologous transfection of viable adult organotypic brain slices using an enhanced gene gun. BMC Res Notes 6:544. doi:10.1186/1756-0500-6-544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A 84:7413–7417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ohki EC, Tilkins ML, Ciccarone VC, Price PJ (2001) Improving the transfection efficiency of post-mitotic neurons. J Neurosci Methods 112:95–99

    Article  CAS  PubMed  Google Scholar 

  141. Dalby B, Cates S, Harris A, Ohki EC, Tilkins ML, Price PJ, Ciccarone VC (2004) Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications. Methods 33:95–103. doi:10.1016/j.ymeth.2003.11.023

    Article  CAS  PubMed  Google Scholar 

  142. Guo Z, Cao Y-Q (2014) Over-expression of TRESK K(+) channels reduces the excitability of trigeminal ganglion nociceptors. PLoS One 9:e87029. doi:10.1371/journal.pone.0087029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Williams DJ, Puhl HL, Ikeda SR (2010) A simple, highly efficient method for heterologous expression in mammalian primary neurons using cationic lipid-mediated mRNA transfection. Front Neurosci 4:181. doi:10.3389/fnins.2010.00181

    Article  PubMed  PubMed Central  Google Scholar 

  144. McLenachan S, Zhang D, Palomo ABA, Edel MJ, Chen FK (2013) mRNA transfection of mouse and human neural stem cell cultures. PLoS One 8:e83596. doi:10.1371/journal.pone.0083596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Wiesenhofer B, Kaufmann WA, Humpel C (1999) Improved lipid-mediated gene transfer in C6 glioma cells and primary glial cells using FuGene™. J Neurosci Methods 92:145–152. doi:10.1016/S0165-0270(99)00108-9

    Article  CAS  PubMed  Google Scholar 

  146. Wiesenhofer B, Humpel C (2000) Lipid-mediated gene transfer into primary neurons using FuGene: comparison to C6 glioma cells and primary glia. Exp Neurol 164:38–44. doi:10.1006/exnr.2000.7414

    Article  CAS  PubMed  Google Scholar 

  147. Tinsley RB, Faijerson J, Eriksson PS (2006) Efficient non-viral transfection of adult neural stem/progenitor cells, without affecting viability, proliferation or differentiation. J Gene Med 8:72–81. doi:10.1002/jgm.823

    Article  CAS  PubMed  Google Scholar 

  148. Tönges L, Lingor P, Egle R, Dietz GPH, Fahr A, Bähr M (2006) Stearylated octaarginine and artificial virus-like particles for transfection of siRNA into primary rat neurons. RNA 12:1431–1438. doi:10.1261/rna.2252206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Butcher AJ, Torrecilla I, Young KW, Kong KC, Mistry SC, Bottrill AR, Tobin AB (2009) N-methyl-D-aspartate receptors mediate the phosphorylation and desensitization of muscarinic receptors in cerebellar granule neurons. J Biol Chem 284:17147–17156. doi:10.1074/jbc.M901031200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Dai S-H, Chen T, Wang Y-H, Zhu J, Luo P, Rao W, Yang Y-F, Fei Z, Jiang X-F (2014) Sirt3 protects cortical neurons against oxidative stress via regulating mitochondrial Ca2+ and mitochondrial biogenesis. Int J Mol Sci 15:14591–14609. doi:10.3390/ijms150814591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Köhrmann M, Haubensak W, Hemraj I, Kaether C, Leßmann VJ, Kiebler MA (1999) Fast, convenient, and effective method to transiently transfect primary hippocampal neurons. J Neurosci Res 58:831–835. doi:10.1002/(SICI)1097-4547(19991215)58:6<831::AID-JNR10>3.0.CO;2-M

    Article  PubMed  Google Scholar 

  152. Goetze B, Grunewald B, Baldassa S, Kiebler M (2004) Chemically controlled formation of a DNA/calcium phosphate coprecipitate: application for transfection of mature hippocampal neurons. J Neurobiol 60:517–525. doi:10.1002/neu.20073

    Article  CAS  PubMed  Google Scholar 

  153. Dudek H, Ghosh A, Greenberg ME (2001) Calcium phosphate transfection of DNA into neurons in primary culture. Curr Protoc Neurosci Chapter 3:Unit 3.11. doi:10.1002/0471142301.ns0311s03

    CAS  PubMed  Google Scholar 

  154. Dahm R, Zeitelhofer M, Götze B, Kiebler MA, Macchi P (2008) Visualizing mRNA localization and local protein translation in neurons. Methods Cell Biol 85:293–327. doi:10.1016/S0091-679X(08)85013-3

    Article  CAS  PubMed  Google Scholar 

  155. Jiang M, Chen G (2006) High Ca2+−phosphate transfection efficiency in low-density neuronal cultures. Nat Protoc 1:695–700. doi:10.1038/nprot.2006.86

    Article  CAS  PubMed  Google Scholar 

  156. Sun M, Bernard LP, Dibona VL, Wu Q, Zhang H (2013) Calcium phosphate transfection of primary hippocampal neurons. J Vis Exp:e50808. doi:10.3791/50808

  157. Junquera E, Aicart E (2015) Recent progress in gene therapy to deliver nucleic acids with multivalent cationic vectors. Adv Colloid Interface Sci 233:161–175. doi:10.1016/j.cis.2015.07.003

    Article  PubMed  CAS  Google Scholar 

  158. Becattini G, Mattos LS, Caldwell DG (2014) A fully automated system for adherent cells microinjection. IEEE J Biomed Heal Inform 18:83–93. doi:10.1109/JBHI.2013.2248161

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Anna Cereseto, Dr. Luciano Conti, and Martin Michael Hanczyc for their comments on the manuscript. We apologize to all authors whose work could not be cited due to space restrictions. This work was supported by the MaDEleNA Project funded by PAT (Autonomous Province of Trento, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Macchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Rossi, A., Dahm, R., Macchi, P. (2017). Transfection of Cultured Primary Neurons. In: Srivastava, A., Snyder, E., Teng, Y. (eds) Stem Cell Technologies in Neuroscience. Neuromethods, vol 126. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7024-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7024-7_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7022-3

  • Online ISBN: 978-1-4939-7024-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics