Skip to main content

Local Alignment of Ligand Binding Sites in Proteins for Polypharmacology and Drug Repositioning

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1611))

Abstract

The administration of drugs is a key strategy in pharmacotherapy to treat diseases. Drugs are typically developed to modulate the function of specific proteins, which are directly associated with particular disease states. Nonetheless, recent studies suggest that protein-drug interactions are rather promiscuous and the majority of pharmaceuticals exhibit activity against multiple, often unrelated proteins. Certainly, the lack of selectivity often leads to drug side effects; on the other hand, these polypharmacological attributes can be used to develop drugs acting on multiple targets within a unique disease pathway, as well as to identify new targets for existing drugs, which is known as drug repositioning. To support drug development and repurposing, we developed eMatchSite, a new approach to detect those binding sites having the capability to bind similar compounds. eMatchSite is available as a standalone software and a webserver at http://www.brylinski.org/ematchsite.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Paolini GV, Shapland RH, van Hoorn WP, Mason JS, Hopkins AL (2006) Global mapping of pharmacological space. Nat Biotechnol 24:805–815

    Article  CAS  PubMed  Google Scholar 

  2. Wang Y, Bolton E, Dracheva S, Karapetyan K, Shoemaker BA, Suzek TO, Wang J, Xiao J, Zhang J, Bryant SH (2010) An overview of the PubChem BioAssay resource. Nucleic Acids Res 38:D255–D266

    Article  CAS  PubMed  Google Scholar 

  3. Li Q, Cheng T, Wang Y, Bryant SH (2010) PubChem as a public resource for drug discovery. Drug Discov Today 15:1052–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Azzaoui K, Hamon J, Faller B, Whitebread S, Jacoby E, Bender A, Jenkins JL, Urban L (2007) Modeling promiscuity based on in vitro safety pharmacology profiling data. ChemMedChem 2:874–880

    Article  CAS  PubMed  Google Scholar 

  5. Mestres J, Gregori-Puigjane E, Valverde S, Sole RV (2008) Data completeness—the Achilles heel of drug-target networks. Nat Biotechnol 26:983–984

    Article  CAS  PubMed  Google Scholar 

  6. Benson SC, Pershadsingh HA, Ho CI, Chittiboyina A, Desai P, Pravenec M, Qi N, Wang J, Avery MA, Kurtz TW (2004) Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARgamma-modulating activity. Hypertension 43:993–1002

    Article  CAS  PubMed  Google Scholar 

  7. Weber A, Casini A, Heine A, Kuhn D, Supuran CT, Scozzafava A, Klebe G (2004) Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-selective celecoxib: new pharmacological opportunities due to related binding site recognition. J Med Chem 47:550–557

    Article  CAS  PubMed  Google Scholar 

  8. Kellenberger E, Schalon C, Rognan D (2008) How to measure the similarity between protein-ligand binding sites? Curr Comput Aided Drug Des 4:209–220

    Article  CAS  Google Scholar 

  9. Yeturu K, Chandra N (2008) PocketMatch: a new algorithm to compare binding sites in protein structures. BMC Bioinformatics 9:543

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jambon M, Imberty A, Deleage G, Geourjon C (2003) A new bioinformatic approach to detect common 3D sites in protein structures. Proteins 52:137–145

    Article  CAS  PubMed  Google Scholar 

  11. Shulman-Peleg A, Nussinov R, Wolfson HJ (2004) Recognition of functional sites in protein structures. J Mol Biol 339:607–633

    Article  CAS  PubMed  Google Scholar 

  12. Xie L, Bourne PE (2008) Detecting evolutionary relationships across existing fold space, using sequence order-independent profile-profile alignments. Proc Natl Acad Sci U S A 105:5441–5446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brylinski M (2014) eMatchSite: sequence order-independent structure alignments of ligand binding pockets in protein models. PLoS Comput Biol 10:e1003829

    Article  PubMed  PubMed Central  Google Scholar 

  14. Brylinski M, Feinstein WP (2013) eFindSite: improved prediction of ligand binding sites in protein models using meta-threading, machine learning and auxiliary ligands. J Comput Aided Mol Des 27:551–567

    Article  CAS  PubMed  Google Scholar 

  15. Feinstein WP, Brylinski M (2014) eFindSite: enhanced fingerprint-based virtual screening against predicted ligand binding sites in protein models. Mol Inform 33:135–150

    Article  CAS  PubMed  Google Scholar 

  16. Hartshorn MJ (2002) AstexViewer: a visualisation aid for structure-based drug design. J Comput Aided Mol Des 16:871–881

    Article  CAS  PubMed  Google Scholar 

  17. Polovnikova ES, McLeish MJ, Sergienko EA, Burgner JT, Anderson NL, Bera AK, Jordan F, Kenyon GL, Hasson MS (2003) Structural and kinetic analysis of catalysis by a thiamin diphosphate-dependent enzyme, benzoylformate decarboxylase. Biochemistry 42:1820–1830

    Article  CAS  PubMed  Google Scholar 

  18. Arjunan P, Chandrasekhar K, Sax M, Brunskill A, Nemeria N, Jordan F, Furey W (2004) Structural determinants of enzyme binding affinity: the E1 component of pyruvate dehydrogenase from Escherichia coli in complex with the inhibitor thiamin thiazolone diphosphate. Biochemistry 43:2405–2411

    Article  CAS  PubMed  Google Scholar 

  19. Kluger R, Gish G, Kauffman G (1984) Interaction of thiamin diphosphate and thiamin thiazolone diphosphate with wheat germ pyruvate decarboxylase. J Biol Chem 259:8960–8965

    CAS  PubMed  Google Scholar 

  20. O’Brien TA, Gennis RB (1980) Studies of the thiamin pyrophosphate binding site of Escherichia coli pyruvate oxidase. Evidence for an essential tryptophan residue. J Biol Chem 255:3302–3307

    PubMed  Google Scholar 

  21. Nemeria N, Yan Y, Zhang Z, Brown AM, Arjunan P, Furey W, Guest JR, Jordan F (2001) Inhibition of the Escherichia coli pyruvate dehydrogenase complex E1 subunit and its tyrosine 177 variants by thiamin 2-thiazolone and thiamin 2-thiothiazolone diphosphates. Evidence for reversible tight-binding inhibition. J Biol Chem 276:45969–45978

    Article  CAS  PubMed  Google Scholar 

  22. Berthold CL, Moussatche P, Richards NG, Lindqvist Y (2005) Structural basis for activation of the thiamin diphosphate-dependent enzyme oxalyl-CoA decarboxylase by adenosine diphosphate. J Biol Chem 280:41645–41654

    Article  CAS  PubMed  Google Scholar 

  23. Machius M, Wynn RM, Chuang JL, Li J, Kluger R, Yu D, Tomchick DR, Brautigam CA, Chuang DT (2006) A versatile conformational switch regulates reactivity in human branched-chain alpha-ketoacid dehydrogenase. Structure 14:287–298

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y, Skolnick J (2004) Scoring function for automated assessment of protein structure template quality. Proteins 57:702–710

    Article  CAS  PubMed  Google Scholar 

  25. Kuhn HW (1955) The Hungarian method for the assignment problem. Naval Research Logistics Quarterly 2:83–97

    Article  Google Scholar 

  26. Munkres J (1957) Algorithms for the assignment and transportation problems. J Soc Ind Appl Math 5:32–38

    Article  Google Scholar 

  27. Sipser M (2004) Time Complexity. In: Sipser M (ed) Introduction to the theory of computation. Thompson Learning, Inc., Cambridge, MA

    Google Scholar 

  28. Brylinski M, Skolnick J (2010) Cross-reactivity virtual profiling of the human kinome by X-react(KIN): a chemical systems biology approach. Mol Pharm 7:2324–2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Irwin JJ, Shoichet BK (2005) ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kendall M (1938) A new measure of rank correlation. Biometrika 30:81–89

    Article  Google Scholar 

  31. Feinstein W, Moreno J, Jarrell M, Brylinski M (2015) Accelerating the pace of protein functional annotation with Intel Xeon phi coprocessors. IEEE Trans Nanobioscience 14:429–439

    Article  PubMed  Google Scholar 

  32. Feinstein WP, Brylinski M (2015) Accelerated structural bioinformatics for drug discovery. In: Jeffers J, Reinders J (eds) High performance parallelism pearls volume two. Morgan Kaufmann, Waltham, pp 55–72

    Chapter  Google Scholar 

Download references

Acknowledgments

The research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R35GM119524. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Brylinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Brylinski, M. (2017). Local Alignment of Ligand Binding Sites in Proteins for Polypharmacology and Drug Repositioning. In: Kihara, D. (eds) Protein Function Prediction. Methods in Molecular Biology, vol 1611. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7015-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7015-5_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7013-1

  • Online ISBN: 978-1-4939-7015-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics