Skip to main content

G-LoSA for Prediction of Protein-Ligand Binding Sites and Structures

  • Protocol
  • First Online:
Protein Function Prediction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1611))

Abstract

Recent advances in high-throughput structure determination and computational protein structure prediction have significantly enriched the universe of protein structure. However, there is still a large gap between the number of available protein structures and that of proteins with annotated function in high accuracy. Computational structure-based protein function prediction has emerged to reduce this knowledge gap. The identification of a ligand binding site and its structure is critical to the determination of a protein’s molecular function. We present a computational methodology for predicting small molecule ligand binding site and ligand structure using G-LoSA, our protein local structure alignment and similarity measurement tool. All the computational procedures described here can be easily implemented using G-LoSA Toolkit, a package of standalone software programs and preprocessed PDB structure libraries. G-LoSA and G-LoSA Toolkit are freely available to academic users at http://compbio.lehigh.edu/GLoSA. We also illustrate a case study to show the potential of our template-based approach harnessing G-LoSA for protein function prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schnoes AM, Brown SD, Dodevski I, Babbitt PC (2009) Annotation error in public databases: misannotation of molecular function in enzyme superfamilies. PLoS Comput Biol 5(12):e1000605

    Article  PubMed  PubMed Central  Google Scholar 

  2. Liolios K, Chen IMA, Mavromatis K, Tavernarakis N, Hugenholtz P, Markowitz VM, Kyrpides NC (2010) The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 38:D346–D354

    Article  CAS  PubMed  Google Scholar 

  3. Rost B (2002) Enzyme function less conserved than anticipated. J Mol Biol 318(2):595–608

    Article  CAS  PubMed  Google Scholar 

  4. Chandonia JM, Brenner SE (2006) The impact of structural genomics: expectations and outcomes. Science 311(5759):347–351

    Article  CAS  PubMed  Google Scholar 

  5. Skolnick J, Zhou HY, Gao M (2013) Are predicted protein structures of any value for binding site prediction and virtual ligand screening? Curr Opin Struct Biol 23(2):191–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Konc J, Janezic D (2014) Binding site comparison for function prediction and pharmaceutical discovery. Curr Opin Struct Biol 25:34–39

    Article  CAS  PubMed  Google Scholar 

  7. Shumilin IA, Cymborowski M, Chertihin O, Jha KN, Herr JC, Lesley SA, Joachimiak A, Minor W (2012) Identification of unknown protein function using metabolite cocktail screening. Structure 20(10):1715–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rose PW, Beran B, Bi C, Bluhm WF, Dimitropoulos D, Goodsell DS, Prlic A, Quesada M, Quinn GB, Westbrook JD, Young J, Yukich B, Zardecki C, Berman HM, Bourne PE (2011) The RCSB Protein Data Bank: redesigned web site and web services. Nucleic Acids Res 39(Database issue):D392–D401

    Article  CAS  PubMed  Google Scholar 

  9. Brylinski M, Skolnick J (2008) A threading-based method (FINDSITE) for ligand-binding site prediction and functional annotation. Proc Natl Acad Sci U S A 105(1):129–134

    Article  CAS  PubMed  Google Scholar 

  10. Lee HS, Zhang Y (2012) BSP-SLIM: a blind low-resolution ligand-protein docking approach using predicted protein structures. Proteins 80(1):93–110

    Article  CAS  PubMed  Google Scholar 

  11. Andreeva A, Howorth D, Brenner SE, Hubbard TJ, Chothia C, Murzin AG (2004) SCOP database in 2004: refinements integrate structure and sequence family data. Nucleic Acids Res 32(Database issue):D226–D229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Russell RB (1998) Detection of protein three-dimensional side-chain patterns: new examples of convergent evolution. J Mol Biol 279(5):1211–1227

    Article  CAS  PubMed  Google Scholar 

  13. Lee HS, Im W (2012) Identification of ligand templates using local structure alignment for structure-based drug design. J Chem Inf Model 52(10):2784–2795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee HS, Im W (2013) Ligand binding site detection by local structure alignment and its performance complementarity. J Chem Inf Model 53(9):2462–2470

    Article  CAS  PubMed  Google Scholar 

  15. Lee HS, Im W (2016) G-LoSA: an efficient computational tool for local structure-centric biological studies and drug design. Protein Sci 25(4):865–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li B, Turuvekere S, Agrawal M, La D, Ramani K, Kihara D (2008) Characterization of local geometry of protein surfaces with the visibility criterion. Proteins 71(2):670–683

    Article  CAS  PubMed  Google Scholar 

  17. Greene LH, Lewis TE, Addou S, Cuff A, Dallman T, Dibley M, Redfern O, Pearl F, Nambudiry R, Reid A, Sillitoe I, Yeats C, Thornton JM, Orengo CA (2007) The CATH domain structure database: new protocols and classification levels give a more comprehensive resource for exploring evolution. Nucleic Acids Res 35(Database issue):D291–D297

    Article  CAS  PubMed  Google Scholar 

  18. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44(D1):D279–D285

    Article  CAS  PubMed  Google Scholar 

  19. Tauchert MJ, Fourmann JB, Christian H, Luhrmann R, Ficner R (2016) Structural and functional analysis of the RNA helicase Prp43 from the thermophilic eukaryote Chaetomium thermophilum. Acta Crystallogr F Struct Biol Commun 72(Pt 2):112–120

    Article  CAS  PubMed  Google Scholar 

  20. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Cheminform 3:33

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH U54GM087519, KU GRF2301048, and XSEDE MCB070009.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Sun Lee or Wonpil Im .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Lee, H.S., Im, W. (2017). G-LoSA for Prediction of Protein-Ligand Binding Sites and Structures. In: Kihara, D. (eds) Protein Function Prediction. Methods in Molecular Biology, vol 1611. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7015-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7015-5_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7013-1

  • Online ISBN: 978-1-4939-7015-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics