Skip to main content

WATsite2.0 with PyMOL Plugin: Hydration Site Prediction and Visualization

  • Protocol
  • First Online:
Protein Function Prediction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1611))

Abstract

Water molecules in the binding site of a protein significantly influence protein structure and function, for example, by mediating protein–ligand interactions or due to water displacement as driving force for ligand binding. The knowledge about location and thermodynamic contributions of binding site water molecules is crucial for understanding protein function. WATsite is a hydration site analysis program that was developed together with an easy-to-use graphical user interface (GUI) based on PyMOL. WATsite identifies hydration sites from a molecular dynamics (MD) simulation trajectory with four different types of explicit water molecules. Hydration sites can be identified with or without the presence of a bound ligand dependent on the scientific problem. The protein desolvation free energy can be estimated for any ligand by summation of the hydration site free energies of the displaced hydration sites. The location and thermodynamic profile of hydration sites mediating the protein-ligand interactions is important for understanding protein-ligand binding. The WATsite program and GUI are available free of charge from http://people.pharmacy.purdue.edu/~mlill/software/watsite/version2.shtml.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheung MS, Garcia AE, Onuchic JN (2002) Protein folding mediated by solvation: water expulsion and formation of the hydrophobic core occur after the structural collapse. Proc Natl Acad Sci U S A 99(2):685–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gao M et al (2010) Water dynamics clue to key residues in protein folding. Biochem Biophys Res Commun 392(1):95–99

    Article  CAS  PubMed  Google Scholar 

  3. Kovacs IA, Szalay MS, Csermely P (2005) Water and molecular chaperones act as weak links of protein folding networks: energy landscape and punctuated equilibrium changes point towards a game theory of proteins. FEBS Lett 579(11):2254–2260

    Article  CAS  PubMed  Google Scholar 

  4. Sessions RB, Thomas GL, Parker MJ (2004) Water as a conformational editor in protein folding. J Mol Biol 343(4):1125–1133

    Article  CAS  PubMed  Google Scholar 

  5. Vajda T, Perczel A (2014) Role of water in protein folding, oligomerization, amyloidosis and miniprotein. J Pept Sci 20(10):747–759

    Article  CAS  PubMed  Google Scholar 

  6. Zuo G, Hu J, Fang H (2009) Effect of the ordered water on protein folding: an off-lattice Go-like model study. Phys Rev E Stat Nonlinear Soft Matter Phys 79(3 Pt 1):031925

    Article  Google Scholar 

  7. Biela A et al (2012) Water makes the difference: rearrangement of water solvation layer triggers non-additivity of functional group contributions in protein-ligand binding. ChemMedChem 7(8):1423–1434

    Article  CAS  PubMed  Google Scholar 

  8. Breiten B et al (2013) Water networks contribute to enthalpy/entropy compensation in protein-ligand binding. J Am Chem Soc 135(41):15579–15584

    Article  CAS  PubMed  Google Scholar 

  9. Li Z, Lazaridis T (2006) Thermodynamics of buried water clusters at a protein-ligand binding interface. J Phys Chem B 110(3):1464–1475

    Article  CAS  PubMed  Google Scholar 

  10. Michel J, Tirado-Rives J, Jorgensen WL (2009) Energetics of displacing water molecules from protein binding sites: consequences for ligand optimization. J Am Chem Soc 131(42):15403–15411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Baron R, Setny P, McCammon JA (2010) Water in cavity-ligand recognition. J Am Chem Soc 132(34):12091–12097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bortolato A et al (2013) Water network perturbation in ligand binding: adenosine A(2A) antagonists as a case study. J Chem Inf Model 53(7):1700–1713

    Article  CAS  PubMed  Google Scholar 

  13. Hummer G (2010) Molecular binding: under Water’s influence. Nat Chem 2(11):906–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ladbury JE (1996) Just add water! The effect of water on the specificity of protein-ligand binding sites and its potential application to drug design. Chem Biol 3(12):973–980

    Article  CAS  PubMed  Google Scholar 

  15. Chen JM et al (1998) Structure-based design of potent inhibitors of scytalone dehydratase: displacement of a water molecule from the active site. Biochemistry 37(51):17735–17744

    Article  CAS  PubMed  Google Scholar 

  16. Gerogiokas G et al (2015) Evaluation of water displacement energetics in protein binding sites with grid cell theory. Phys Chem Chem Phys 17(13):8416–8426

    Article  CAS  PubMed  Google Scholar 

  17. Wissner A et al (2000) 4-Anilino-6,7-dialkoxyquinoline-3-carbonitrile inhibitors of epidermal growth factor receptor kinase and their bioisosteric relationship to the 4-anilino-6,7-dialkoxyquinazoline inhibitors. J Med Chem 43(17):3244–3256

    Article  CAS  PubMed  Google Scholar 

  18. Pronk S et al (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Case DA et al (2014) AMBER 14. University of California, San Francisco

    Google Scholar 

  20. Word JM et al (1999) Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J Mol Biol 285(4):1735–1747

    Article  CAS  PubMed  Google Scholar 

  21. The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC

    Google Scholar 

  22. Hu B, Lill MA (2012) Protein pharmacophore selection using hydration-site analysis. J Chem Inf Model 52(4):1046–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hu B, Lill MA (2014) Watsite: hydration site prediction program with pymol interface. J Comput Chem 35(16):1255–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lindorff-Larsen K et al (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78(8):1950–1958

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang Y, Hu B, Lill MA (2014) Analysis of factors influencing hydration site prediction based on molecular dynamics simulations. J Chem Inf Model 54(10):2987–2995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zielkiewicz J (2005) Structural properties of water: comparison of the SPC, SPCE, TIP4P, and TIP5P models of water. J Chem Phys 123(10):104501

    Article  PubMed  Google Scholar 

  27. Horn HW et al (2004) Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J Chem Phys 120(20):9665–9678

    Article  CAS  PubMed  Google Scholar 

  28. Ester M et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the second international conference on knowledge discovery and data mining (KDD-96). AAAI Press, Menlo Park

    Google Scholar 

  29. Heyer LJ, Kruglyak S, Yooseph S (1999) Exploring expression data: identification and analysis of coexpressed genes. Genome Res 9(11):1106–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge a grant from the NIH (GM092855) for partially supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus A. Lill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Yang, Y., Hu, B., Lill, M.A. (2017). WATsite2.0 with PyMOL Plugin: Hydration Site Prediction and Visualization. In: Kihara, D. (eds) Protein Function Prediction. Methods in Molecular Biology, vol 1611. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7015-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7015-5_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7013-1

  • Online ISBN: 978-1-4939-7015-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics