Skip to main content

The Generation of Doubled Haploid Lines for QTL Mapping

  • Protocol
  • First Online:
Plant Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1610))

Abstract

Recombinant inbred lines (RILs) are an essential tool for quantitative trait locus (QTL) mapping in Arabidopsis thaliana. Conventionally, the development of these lines is a time-consuming and tedious process requiring six to eight generations of selfing. Here, we describe an alternative approach: the rapid generation of RILs in A. thaliana via the creation of doubled haploids. In this method, F1 plants are crossed to an engineered haploid inducer to produce haploid plants. The chromosomes of these haploids then spontaneously double, generating immortalized homozygous F2 lines called doubled haploid RILs (DH RILs). Finally, DH RILs are genotyped using low-coverage whole-genome sequencing and are ready to be used for QTL mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Lynch M, Walsh B (1997) Mapping and characterizing QTLs: inbred line crosses. In: Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland, MA, pp 431–489

    Google Scholar 

  2. Seymour DK, Filiault DL, Henry IM, Monson-Miller J, Ravi M, Pang A, Comai L, SWL C, Maloof JN (2012) Rapid creation of Arabidopsis doubled haploid lines for quantitative trait locus mapping. Proc Natl Acad Sci U S A 109:4227–4232. doi:10.1073/pnas.1117277109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dunwell JM (2010) Haploids in flowering plants: origins and exploitation. Plant Biotechnol J 8:377–424. doi:10.1111/j.1467-7652.2009.00498.x

    Article  CAS  PubMed  Google Scholar 

  4. Forster BP, Thomas WTB (2010) Doubled haploids in genetics and plant breeding. In: Janick J (ed) Plant breeding reviews, vol 25. John Wiley & Sons, Inc., Hoboken, NJ, pp 57–88. http://onlinelibrary.wiley.com/book/10.1002/9780470650301

  5. Guiderdoni E, Galinato E, Luistro J, Vergara G (1992) Anther culture of tropical japonica indica hybrids of rice (Oryza sativa L.) Euphytica 62:219–224. doi:10.1007/bf00041756

    Article  Google Scholar 

  6. Alan AR, Mutschler MA, Aigars B, Ed C, Earle ED (2003) Production of gynogenic plants from hybrids of Allium cepa L. and A. roylei Stearn. Plant Sci 165:1201–1211. doi:10.1016/s0168-9452(03)00327-3

    Article  CAS  Google Scholar 

  7. Ferreira ME, Williams PH, Osborn TC (1994) RFLP mapping of Brassica napus using doubled haploid lines. Theor Appl Genet 89:615–621. doi:10.1007/BF00222456

    Article  CAS  PubMed  Google Scholar 

  8. Coe EH (1959) A line of maize with high haploid frequency. Am Nat 93:381–382. doi:10.1086/282098

    Article  Google Scholar 

  9. Kasha KJ, Kao KN (1970) High frequency haploid production in barley (Hordeum vulgare L.) Nature 225:874–876. doi:10.1038/225874a0

    Article  CAS  PubMed  Google Scholar 

  10. Barclay IR (1975) High frequencies of haploid production in wheat (Triticum aestivum) by chromosome elimination. Nature 256:410–411. doi:10.1038/256410a0

    Article  Google Scholar 

  11. Ravi M, Chan SWL (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464:615–618. doi:10.1038/nature08842

    Article  CAS  PubMed  Google Scholar 

  12. Tek AL, Stupar RM, Kiyotaka N (2015) Modification of centromere structure: a promising approach for haploid line production in plant breeding. Turk J Agric For 39:557–562. doi:10.3906/tar-1405-137

    Article  Google Scholar 

  13. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi:10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. doi:10.1093/bioinformatics/btp324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. doi:10.1093/bioinformatics/btp352

    Article  PubMed  PubMed Central  Google Scholar 

  16. R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  17. Scientific Software Development - Dr. Lin Himmelmann and www.linhi.com (2010) HMM: HMM - Hidden Markov Models. R package version 1.0 http://CRAN.R-project.org/package=HMM

  18. Ravi M, Marimuthu MPA, Tan EH, Maheshwari S, Henry IM, Marin-Rodriguez B, Urtecho G, Tan J, Thornhill K, Zhu F, Panoli A, Sundaresan V, Britt AB, Comai L, Chan SWL (2014) A haploid genetics toolbox for Arabidopsis thaliana. Nat Commun 5:5334. doi:10.1038/ncomms6334

    Article  CAS  PubMed  Google Scholar 

  19. Ravi M, Bondada R (2016) Genome elimination by tailswap CenH3: in vivo haploid production in Arabidopsis thaliana. In: Murata M (ed) Chromosome and genomic engineering in plants. Springer, New York, pp 77–99

    Chapter  Google Scholar 

  20. The 1001 Genomes Consortium (2016) 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166(2):481–491

    Article  Google Scholar 

  21. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. doi:10.1046/j.1365-313x.1998.00343.x

    Article  CAS  PubMed  Google Scholar 

  22. Rowan BA, Seymour DK, Chae E, Lundberg DS, Weigel D (2017) Methods for genotyping-by-sequencing. In: White SJ, Cantsilieris S (eds) Genotyping: methods and protocols. Springer, New York. pp 221–242

    Google Scholar 

Download references

Acknowledgments

We thank Anne Britt for helpful discussions. The DH RIL project in the Maloof Lab was funded by NSF grants IOS-0923752 and IOS-0820854. RM acknowledges Ramalingaswami Fellowship awarded by the Department of Biotechnology (DBT), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julin N. Maloof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Filiault, D.L., Seymour, D.K., Maruthachalam, R., Maloof, J.N. (2017). The Generation of Doubled Haploid Lines for QTL Mapping. In: Busch, W. (eds) Plant Genomics. Methods in Molecular Biology, vol 1610. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7003-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7003-2_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7001-8

  • Online ISBN: 978-1-4939-7003-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics