Skip to main content

Mapping Protein-Protein Interaction Using High-Throughput Yeast 2-Hybrid

  • Protocol
  • First Online:
Plant Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1610))

Abstract

A tremendous asset to the analysis of protein-protein interactions is the yeast-2-hybrid (Y2H) method. The Y2H assay is a heterologous system that is expanding network biology knowledge via in vivo investigations of binary protein-protein interactions. Traditionally, the Y2H protocol entails the mating or co-transformation of yeast in solid agar media followed by visual analysis for diploid selection. Having played a key role in identifying protein-protein interactions for nearly three decades in a wide range of biological systems, the Y2H system assays the interaction between two proteins of interest which results in a reconstituted and/or activation of transcription factor allowing a reporter gene to be transcribed. Overall, the Y2H method takes advantage of two factors: (1) the auxotrophic yeast requires expression of the reporter gene to grow in media purposefully designed to lack one or more essential amino acids, and (2) the DNA-binding (DB) domain of transcription factor GAL4 is unable to initiate transcription unless it is physically associated with an activating domain (AD), which, together, DBs and ADs are fused to proteins of interest that must interact with each other to reconstitute the transcription factor and activate the reporter gene. The applications of Y2H are broad, entailing fields such as drug discovery, clinical trials for human disease including cancer and neurodegenerative disease, and extend even into synthetic biology applications and cellular engineering. This chapter begins with an introduction to the fundamental mechanics of Y2H utilizing a genetically engineered strain of yeast and proceeds with an in-depth look at the different types of Y2H and turn our focus particularly to the GAL4-based Y2H system to map protein-protein interactions. We will then provide a step-by-step protocol for the Y2H experimentation preceded by a materials listing while simultaneously including key notes throughout the entire experimental process of biological-mechanistic and historical understandings of the steps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Mao L et al (2009) Arabidopsis gene co-expression network and its functional modules. BMC Bioinformatics 10:346

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mochida K, Shinozaki K (2011) Advances in omics and bioinformatics tools for systems analyses of plant functions. Plant Cell Physiol 52(12):2017–2038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arabidopsis Interactome Mapping, C (2011) Evidence for network evolution in an Arabidopsis interactome map. Science 333(6042):601–607

    Article  Google Scholar 

  4. Gonzalez MW, Kann MG (2012) Chapter 4: protein interactions and disease. PLoS Comput Biol 8(12):e1002819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340(6230):245–246

    Article  CAS  PubMed  Google Scholar 

  6. Mukhtar MS et al (2011) Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333(6042):596–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Oliver S (2000) Guilt-by-association goes global. Nature 403(6770):601–603

    Article  CAS  PubMed  Google Scholar 

  8. Braun P et al (2009) An experimentally derived confidence score for binary protein-protein interactions. Nat Methods 6(1):91–97

    Article  CAS  PubMed  Google Scholar 

  9. Simonis N et al (2009) Empirically controlled mapping of the Caenorhabditis elegans protein-protein interactome network. Nat Methods 6(1):47–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bruckner A et al (2009) Yeast two-hybrid, a powerful tool for systems biology. Int J Mol Sci 10(6):2763–2788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Verschure PJ, Visser AE, Rots MG (2006) Step out of the groove: epigenetic gene control systems and engineered transcription factors. Adv Genet 56:163–204

    CAS  PubMed  Google Scholar 

  12. Lilley DM (1992) DNA--protein interactions. HMG has DNA wrapped up. Nature 357(6376):282–283

    Article  CAS  PubMed  Google Scholar 

  13. Ptashne M, Gann A (1997) Transcriptional activation by recruitment. Nature 386(6625):569–577

    Article  CAS  PubMed  Google Scholar 

  14. Warnmark A et al (2003) Activation functions 1 and 2 of nuclear receptors: molecular strategies for transcriptional activation. Mol Endocrinol 17(10):1901–1909

    Article  PubMed  Google Scholar 

  15. Van Criekinge W, Beyaert R (1999) Yeast two-hybrid: state of the art. Biol Proced Online 2:1–38

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dai W et al (2013) Establishment of recombinant lac Z reporter gene-transformed yeast cells for bioassay of androgen-like compounds in environment. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 29(3):303–309

    CAS  PubMed  Google Scholar 

  17. Liang ST, Dennis PP, Bremer H (1998) Expression of lacZ from the promoter of the Escherichia coli spc operon cloned into vectors carrying the W205 trp-lac fusion. J Bacteriol 180(23):6090–6100

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Whitaker RD, Walt DR (2007) Fiber-based single cell analysis of reporter gene expression in yeast two-hybrid systems. Anal Biochem 360(1):63–74

    Article  PubMed  Google Scholar 

  19. Dreze M et al (2010) High-quality binary interactome mapping. Methods Enzymol 470:281–315

    Article  CAS  PubMed  Google Scholar 

  20. Klopffleisch K et al (2011) Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis. Mol Syst Biol 7:532

    Article  PubMed  PubMed Central  Google Scholar 

  21. Seo YS et al (2011) Towards establishment of a rice stress response interactome. PLoS Genet 7(4):e1002020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stynen B et al (2012) Diversity in genetic in vivo methods for protein-protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system. Microbiol Mol Biol Rev 76(2):331–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu H et al (2011) Next-generation sequencing to generate interactome datasets. Nat Methods 8(6):478–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Clontech, Matchmaker Clontech, Matchmaker® Gold Yeast Two-Hybrid System

    Google Scholar 

  25. Gangloff S et al (1994) The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol Cell Biol 14(12):8391–8398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Inc, B., Biocompare, HybriZAP®-2.1 XR cDNA Synthesis Kit from Agilent Technologies

    Google Scholar 

  27. Inc, P., promega, CheckMateâ„¢ Mammalian Two-Hybrid System Protocol

    Google Scholar 

  28. Brent R, Ptashne M (1985) A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell 43(3 Pt 2):729–736

    Article  CAS  PubMed  Google Scholar 

  29. Estojak J, Brent R, Golemis EA (1995) Correlation of two-hybrid affinity data with in vitro measurements. Mol Cell Biol 15(10):5820–5829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fashena SJ, Serebriiskii IG, Golemis EA (2000) LexA-based two-hybrid systems. Methods Enzymol 328:14–26

    Article  CAS  PubMed  Google Scholar 

  31. Park K et al (2007) A split enhanced green fluorescent protein-based reporter in yeast two-hybrid system. Protein J 26(2):107–116

    Article  CAS  PubMed  Google Scholar 

  32. Ito T et al (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A 98(8):4569–4574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ito T et al (2000) Toward a protein-protein interaction map of the budding yeast: a comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc Natl Acad Sci U S A 97(3):1143–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Paumi CM et al (2007) Mapping protein-protein interactions for the yeast ABC transporter Ycf1p by integrated split-ubiquitin membrane yeast two-hybrid analysis. Mol Cell 26(1):15–25

    Article  CAS  PubMed  Google Scholar 

  35. Stagljar I et al (1998) A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc Natl Acad Sci U S A 95(9):5187–5192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Suter B, Auerbach D, Stagljar I (2006) Yeast-based functional genomics and proteomics technologies: the first 15 years and beyond. Biotechniques 40(5):625–644

    Article  CAS  PubMed  Google Scholar 

  37. Aronheim A et al (1997) Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions. Mol Cell Biol 17(6):3094–3102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Moerdyk-Schauwecker M et al (2011) Detecting protein-protein interactions in vesicular stomatitis virus using a cytoplasmic yeast two hybrid system. J Virol Methods 173(2):203–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Simon MA et al (1991) Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell 67(4):701–716

    Article  CAS  PubMed  Google Scholar 

  40. Huang H, Jedynak BM, Bader JS (2007) Where have all the interactions gone? Estimating the coverage of two-hybrid protein interaction maps. PLoS Comput Biol 3(11):e214

    Article  PubMed  PubMed Central  Google Scholar 

  41. Stumpf MP, Wiuf C, May RM (2005) Subnets of scale-free networks are not scale-free: sampling properties of networks. Proc Natl Acad Sci U S A 102(12):4221–4224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hengen PN (1997) False positives from the yeast two-hybrid system. Trends Biochem Sci 22(1):33–34

    Article  CAS  PubMed  Google Scholar 

  43. Vidal M et al (1996) Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions. Proc Natl Acad Sci U S A 93(19):10315–10320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Beranger F et al (1997) Getting more from the two-hybrid system: N-terminal fusions to LexA are efficient and sensitive baits for two-hybrid studies. Nucleic Acids Res 25(10):2035–2036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Struhl K, Davis RW (1977) Production of a functional eukaryotic enzyme in Escherichia coli: cloning and expression of the yeast structural gene for imidazole-glycerolphosphate dehydratase (his3). Proc Natl Acad Sci U S A 74(12):5255–5259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Miersch S, LaBaer J (2011) Nucleic Acid programmable protein arrays: versatile tools for array-based functional protein studies. Curr Protoc Protein Sci Chapter 27:Unit27 2

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (IOS-1557796) to MSM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shahid Mukhtar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Lopez, J., Mukhtar, M.S. (2017). Mapping Protein-Protein Interaction Using High-Throughput Yeast 2-Hybrid. In: Busch, W. (eds) Plant Genomics. Methods in Molecular Biology, vol 1610. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7003-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7003-2_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7001-8

  • Online ISBN: 978-1-4939-7003-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics