Skip to main content

Locating and Visualizing Crystals for X-Ray Diffraction Experiments

  • Protocol
  • First Online:
Book cover Protein Crystallography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1607))

Abstract

Macromolecular crystallography has advanced from using macroscopic crystals, which might be >1 mm on a side, to crystals that are essentially invisible to the naked eye, or even under a standard laboratory microscope. As crystallography requires recognizing crystals when they are produced, and then placing them in an X-ray, electron, or neutron beam, this provides challenges, particularly in the case of advanced X-ray sources, where beams have very small cross sections and crystals may be vanishingly small. Methods for visualizing crystals are reviewed here, and examples of different types of cases are presented, including: standard crystals, crystals grown in mesophase, in situ crystallography, and crystals grown for X-ray Free Electron Laser or Micro Electron Diffraction experiments. As most techniques have limitations, it is desirable to have a range of complementary techniques available to identify and locate crystals. Ideally, a given technique should not cause sample damage, but sometimes it is necessary to use techniques where damage can only be minimized. For extreme circumstances, the act of probing location may be coincident with collecting X-ray diffraction data. Future challenges and directions are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Giegé R (2013) A historical perspective on protein crystallization from 1840 to the present day. FEBS J 280:6456–6497

    Article  PubMed  CAS  Google Scholar 

  2. Bernal JD, Crowfoot D (1934) X-ray photographs of crystalline pepsin. Nature 133:794–795

    Article  CAS  Google Scholar 

  3. Phillips JC, Wlodawer A, Yevitz MM et al (1976) Applications of synchrotron radiation to protein crystallography: preliminary results. Proc Natl Acad Sci U S A 73:128–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Riekel C (2004) Recent developments in microdiffraction on protein crystals. J Synchrotron Radiat 11:4–6

    Article  CAS  PubMed  Google Scholar 

  5. Nelson R, Sawaya MR, Balbirnie M et al (2005) Structure of the cross-β spine of amyloid-like fibrils. Nature 435:773–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Moukhametzianov R, Burghammer M, Edwards PC et al (2008) Protein crystallography with a micrometre-sized synchrotron-radiation beam. Acta Crystallogr D Biol Crystallogr 64:158–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sanishvili R, Yoder DW, Pothineni SB et al (2011) Radiation damage in protein crystals is reduced with a micron-sized X-ray beam. Proc Natl Acad Sci U S A 108:6127–6132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chapman HN, Fromme P, Barty A et al (2011) Femtosecond X-ray protein nanocrystallography. Nature 470:73–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sanishvili R, Nagarajan V, Yoder D et al (2008) A 7 microm mini-beam improves diffraction data from small or imperfect crystals of macromolecules. Acta Crystallogr D Biol Crystallogr 64:425–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fischetti RF, Xu S, Yoder DW et al (2009) Mini-beam collimator enables microcrystallography experiments on standard beamlines. J Synchrotron Radiat 16:217–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Henderson R (1995) The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q Rev Biophys 28:171–193

    Article  CAS  PubMed  Google Scholar 

  12. Petsko GA (1975) Protein crystallography at sub-zero temperatures: cryo-protective mother liquors for protein crystals. J Mol Biol 96:381–392

    Article  CAS  PubMed  Google Scholar 

  13. Teng T-Y (1990) Mounting of crystals for macromolecular crystallography in a free-standing thin film. J Appl Crystallogr 23:387–391

    Article  CAS  Google Scholar 

  14. Hope H (1990) Crystallography of biological macromolecules at ultra-low temperature. Annu Rev Biophys Biophys Chem 19:107–126

    Article  CAS  PubMed  Google Scholar 

  15. Axford D, Owen RL, Aishima J et al (2012) In situ macromolecular crystallography using microbeams. Acta Crystallogr D Biol Crystallogr 68:592–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Landau EM, Rosenbusch JP (1996) Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci U S A 93:14532–14535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Caffrey M (2015) A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes. Acta Crystallogr F Struct Biol Commun 71:3–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rodriguez JA, Ivanova MI, Sawaya MR et al (2015) Structure of the toxic core of α-synuclein from invisible crystals. Nature 525:486–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stevenson HP, Makhov AM, Calero M et al (2014) Use of transmission electron microscopy to identify nanocrystals of challenging protein targets. Proc Natl Acad Sci U S A 111:8470–8475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Perrakis A, Cipriani F, Castagna J-C et al (1999) Protein microcrystals and the design of a microdiffractometer: current experience and plans at EMBL and ESRF/ID13. Acta Crystallogr D Biol Crystallogr 55:1765–1770

    Article  CAS  PubMed  Google Scholar 

  21. Fuchs MR, Pradervand C, Thominet V et al (2014) D3, the new diffractometer for the macromolecular crystallography beamlines of the Swiss Light Source. J Synchrotron Radiat 21:340–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Khan I, Gillilan R, Kriksunov I et al (2012) Confocal microscopy on the beamline: novel three-dimensional imaging and sample positioning. J Appl Crystallogr 45:936–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gilis D, Massar S, Cerf NJ et al (2001) Optimality of the genetic code with respect to protein stability and amino-acid frequencies. Genome Biol 2:1–12

    Article  Google Scholar 

  24. Lunde CS, Rouhani S, Remis JP et al (2005) UV microscopy at 280 nm is effective in screening for the growth of protein microcrystals. J Appl Crystallogr 38:1031–1034

    Article  CAS  Google Scholar 

  25. Gill H (2010) Evaluating the efficacy of tryptophan fluorescence and absorbance as a selection tool for identifying protein crystals. Acta Crystallogr F Struct Biol Commun 66:364–372

    Article  CAS  Google Scholar 

  26. Calero G, Cohen AE, Luft JR et al (2014) Identifying, studying and making good use of macromolecular crystals. Acta Crystallogr F Struct Biol Commun 70:993–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chavas LMG, Yamada Y, Hiraki M et al (2011) UV LED lighting for automated crystal centring. J Synchrotron Radiat 18:11–15

    Article  CAS  PubMed  Google Scholar 

  28. Ravelli RBG, Leiros H-KS, Pan B et al (2003) Specific radiation damage can be used to solve macromolecular crystal structures. Structure 11:217–224

    Article  CAS  PubMed  Google Scholar 

  29. de Sanctis D, Zubieta C, Felisaz F et al (2016) Radiation-damage-induced phasing: a case study using UV irradiation with light-emitting diodes. Acta Crystallogr D Biol Crystallogr 72:395–402

    Article  CAS  Google Scholar 

  30. Snell EH, van der Woerd MJ, Miller MD et al (2005) Finding a cold needle in a warm haystack: infrared imaging applied to locating cryocooled crystals in loops. J Appl Crystallogr 38:69–77

    Article  CAS  Google Scholar 

  31. Newman JA, Zhang S, Sullivan SZ et al (2016) Guiding synchrotron X-ray diffraction by multimodal video-rate protein crystal imaging. J Synchrotron Radiat 23:959–965

    Article  CAS  PubMed  Google Scholar 

  32. Glassford SE, Byrne B, Kazarian SG (2013) Recent applications of ATR FTIR spectroscopy and imaging to proteins. Biochim Biophys Acta 1834:2849–2858

    Article  CAS  PubMed  Google Scholar 

  33. Echalier A, Glazer RL, Fulop V et al (2004) Assessing crystallization droplets using birefringence. Acta Crystallogr D Biol Crystallogr 60:696–702

    Article  CAS  PubMed  Google Scholar 

  34. Eftink MR (1991) Fluorescence techniques for studying protein structure. In: Suelter CH (ed) Methods of biochemical analysis: protein structure determination, vol 35. John Wiley & Sons, Inc., New York, pp 127–205

    Google Scholar 

  35. Callis PR, Vivian JT (2003) Understanding the variable fluorescence quantum yield of tryptophan in proteins using QM-MM simulations. Quenching by charge transfer to the peptide backbone. Chem Phys Lett 369:409–414

    Article  CAS  Google Scholar 

  36. Judge RA, Swift K, Gonzalez C (2005) An ultraviolet fluorescence-based method for identifying and distinguishing protein crystals. Acta Crystallogr D Biol Crystallogr 61:60–66

    Article  PubMed  CAS  Google Scholar 

  37. Desbois S, Seabrook SA, Newman J (2013) Some practical guidelines for UV imaging in the protein crystallization laboratory. Acta Crystallogr F Struct Biol Commun 69:201–208

    Article  CAS  Google Scholar 

  38. Ediger MD, Moog RS, Boxer SG et al (1982) On the refractive index correction in luminescence spectroscopy. Chem Phys Lett 88:123–127

    Article  CAS  Google Scholar 

  39. Pohl E, Ristau U, Gehrmann T et al (2004) Automation of the EMBL Hamburg protein crystallography beamline BW7B. J Synchrotron Radiat 11:372–377

    Article  CAS  PubMed  Google Scholar 

  40. Vernede X, Lavault B, Ohana J et al (2006) UV laser-excited fluorescence as a tool for the visualization of protein crystals mounted in loops. Acta Crystallogr D Biol Crystallogr 62:253–261

    Article  PubMed  CAS  Google Scholar 

  41. Gofron KJ, Duke NEC (2011) Using X-ray excited UV fluorescence for biological crystal location. Nucl Instrum Methods A 649:216–218

    Article  CAS  Google Scholar 

  42. Madden JT, DeWalt EL, Simpson GJ (2011) Two-photon excited UV fluorescence for protein crystal detection. Acta Crystallogr D Biol Crystallogr 67:839–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Madden JT, Toth SJ, Dettmar CM et al (2013) Integrated nonlinear optical imaging microscope for on-axis crystal detection and centering at a synchrotron beamline. J Synchrotron Radiat 20:531–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shukla A, Mukherjee S, Sharma S et al (2004) A novel UV laser-induced visible blue radiation from protein crystals and aggregates: scattering artifacts or fluorescence transitions of peptide electrons delocalized through hydrogen bonding? Arch Biochem Biophys 428:144–153

    Article  CAS  PubMed  Google Scholar 

  45. Lukk T, Gillilan RE, Szebenyi DME et al (2016) A visible-light-excited fluorescence method for imaging protein crystals without added dyes. J Appl Crystallogr 49:234–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sumner JB, Dounce AL (1937) Crystalline catalase. Science 85:366–367

    Article  CAS  PubMed  Google Scholar 

  47. Meyer A, Betzel C, Pusey M (2015) Latest methods of fluorescence-based protein crystal identification. Acta Crystallogr F Struct Biol Commun 71:121–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Groves MR, Muller IB, Kreplin X et al (2007) A method for the general identification of protein crystals in crystallization experiments using a noncovalent fluorescent dye. Acta Crystallogr D Biol Crystallogr 63:526–535

    Article  CAS  PubMed  Google Scholar 

  49. Watts D, Muller-Dieckmann J, Tsakanova G et al (2010) Quantitive evaluation of macromolecular crystallization experiments using 1,8-ANS fluorescence. Acta Crystallogr D Biol Crystallogr 66:901–908

    Article  CAS  PubMed  Google Scholar 

  50. Forsythe E, Achari A, Pusey ML (2006) Trace fluorescent labeling for high-throughput crystallography. Acta Crystallogr D Biol Crystallogr 62:339–346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Pusey M, Barcena J, Morris M et al (2015) Trace fluorescent labeling for protein crystallization. Acta Crystallogr F Struct Biol Commun 71:806–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Suzuki N, Hiraki M, Yamada Y et al (2010) Crystallization of small proteins assisted by green fluorescent protein. Acta Crystallogr D Biol Crystallogr 66:1059–1066

    Article  CAS  PubMed  Google Scholar 

  53. Karain WI, Bourenkov GP, Blume H et al (2002) Automated mounting, centering and screening of crystals for high-throughput protein crystallography. Acta Crystallogr D Biol Crystallogr 58:1519–1522

    Article  CAS  PubMed  Google Scholar 

  54. Stepanov S, Hilgart M, Yoder D et al (2011) Fast fluorescence techniques for crystallography beamlines. J Appl Crystallogr 44:772–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wampler RD, Kissick DJ, Dehen CJ et al (2008) Selective detection of protein crystals by second harmonic microscopy. J Am Chem Soc 130:14076–14077

    Article  CAS  PubMed  Google Scholar 

  56. Kissick DJ, Dettmar CM, Becker M et al (2013) Towards protein-crystal centering using second-harmonic generation (SHG) microscopy. Acta Crystallogr D Biol Crystallogr 69:843–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Moad AJ, Moad CW, Perry JM et al (2007) NLOPredict: visualization and data analysis software for nonlinear optics. J Comput Chem 28:1996–2002

    Article  CAS  PubMed  Google Scholar 

  58. Haupert LM, DeWalt EL, Simpson GJ (2012) Modeling the SHG activities of diverse protein crystals. Acta Crystallogr D Biol Crystallogr 68:1513–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Haupert L, Simpson G (2011) Screening of protein crystallization trials by second order nonlinear optical imaging of chiral crystals (SONICC). Methods 55:379–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kissick DJ, Gualtieri EJ, Simpson GJ et al (2010) Nonlinear optical imaging of integral membrane protein crystals in lipidic mesophases. Anal Chem 82:491–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. DeWalt EL, Begue VJ, Ronau JA et al (2013) Polarization-resolved second-harmonic generation microscopy as a method to visualize protein-crystal domains. Acta Crystallogr D Biol Crystallogr 69:74–81

    Article  CAS  PubMed  Google Scholar 

  62. Closser RG, Gualtieri EJ, Newman JA et al (2013) Characterization of salt interferences in second-harmonic generation detection of protein crystals. J Appl Crystallogr 46:1903–1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Newman JA, Scarborough NM, Pogranichniy NR et al (2015) Intercalating dyes for enhanced contrast in second-harmonic generation imaging of protein crystals. Acta Crystallogr D Biol Crystallogr 71:1471–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dettmar CM, Newman JA, Toth SJ et al (2015) Imaging local electric fields produced upon synchrotron X-ray exposure. Proc Natl Acad Sci U S A 112:696–701

    Article  CAS  PubMed  Google Scholar 

  65. Song J, Mathew D, Jacob SA et al (2007) Diffraction-based automated crystal centering. J Synchrotron Radiat 14:191–195

    Article  CAS  PubMed  Google Scholar 

  66. Cherezov V, Hanson MA, Griffith MT et al (2009) Rastering strategy for screening and centring of microcrystal samples of human membrane proteins with a sub-10 micron size X-ray synchrotron beam. J R Soc Interface 6(Suppl 5):S587–S597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bowler MW, Guijarro M, Petitdemange S et al (2010) Diffraction cartography: applying microbeams to macromolecular crystallography sample evaluation and data collection. Acta Crystallogr D Biol Crystallogr 66:855–864

    Article  CAS  PubMed  Google Scholar 

  68. Aishima J, Owen RL, Axford D et al (2010) High-speed crystal detection and characterization using a fast-readout detector. Acta Crystallogr D Biol Crystallogr 66:1032–1035

    Article  CAS  PubMed  Google Scholar 

  69. Hilgart MC, Sanishvili R, Ogata CM et al (2011) Automated sample-scanning methods for radiation damage mitigation and diffraction-based centering of macromolecular crystals. J Synchrotron Radiat 18:717–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Stevenson HP, Lin G, Barnes CO et al (2016) Transmission electron microscopy for the evaluation and optimization of crystal growth. Acta Crystallogr D Biol Crystallogr 72:603–615

    Article  CAS  Google Scholar 

  71. Shi D, Nannenga BL, de la Cruz MJ et al (2016) The collection of MicroED data for macromolecular crystallography. Nat Protoc 11:895–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shi D, Nannenga BL, Iadanza MG et al (2013) Three-dimensional electron crystallography of protein microcrystals. elife 2:e01345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Rodriguez JA, Gonen T (2016) High-resolution macromolecular structure determination by MicroED, a cryo-EM method. Methods Enzymol 579:369–392

    Article  CAS  PubMed  Google Scholar 

  74. Warren AJ, Armour W, Axford D et al (2013) Visualization of membrane protein crystals in lipid cubic phase using X-ray imaging. Acta Crystallogr D Biol Crystallogr 69:1252–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nishizawa N, Ishida S, Hirose M et al (2012) Three-dimensional, non-invasive, cross-sectional imaging of protein crystals using ultrahigh resolution optical coherence tomography. Biomed Opt Express 3:735–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nitahara S, Maeki M, Yamaguchi H et al (2012) Three-dimensional Raman spectroscopic imaging of protein crystals deposited on a nanodroplet. Analyst 137:5730–5735

    Article  CAS  PubMed  Google Scholar 

  77. Owen RL, Juanhuix J, Fuchs M (2016) Current advances in synchrotron radiation instrumentation for MX experiments. Arch Biochem Biophys 602:21–31

    Article  CAS  PubMed  Google Scholar 

  78. Kawabata K, Takahashi M, Saitoh K et al (2006) Evaluation of crystalline objects in crystallizing protein droplets based on line-segment information in greyscale images. Acta Crystallogr D Biol Crystallogr 62:239–245

    Article  PubMed  CAS  Google Scholar 

  79. Pan S, Shavit G, Penas-Centeno M et al (2006) Automated classification of protein crystallization images using support vector machines with scale-invariant texture and Gabor features. Acta Crystallogr D Biol Crystallogr 62:271–279

    Article  PubMed  CAS  Google Scholar 

  80. Lavault B, Ravelli RBG, Cipriani F (2006) C3D: a program for the automated centring of cryocooled crystals. Acta Crystallogr D Biol Crystallogr 62:1348–1357

    Article  PubMed  CAS  Google Scholar 

  81. Pothineni SB, Strutz T, Lamzin VS (2006) Automated detection and centring of cryocooled protein crystals. Acta Crystallogr D Biol Crystallogr 62:1358–1368

    Article  PubMed  CAS  Google Scholar 

  82. Sullivan SZ, Muir RD, Newman JA et al (2014) High frame-rate multichannel beam-scanning microscopy based on Lissajous trajectories. Opt Express 22:24224–24234

    Article  PubMed  PubMed Central  Google Scholar 

  83. Bingel-Erlenmeyer R, Olieric V, Grimshaw JPA et al (2011) SLS crystallization platform at beamline X06DA—a fully automated pipeline enabling in situ X-ray diffraction screening. Cryst Growth Des 11:916–923

    Article  CAS  Google Scholar 

  84. Yamada Y, Hiraki M, Matsugaki N et al (2016) In-situ data collection at the photon factory macromolecular crystallography beamlines. AIP Conf Proc 1741:050023

    Article  CAS  Google Scholar 

  85. Huang C-Y, Olieric V, Ma P et al (2015) In meso in situ serial X-ray crystallography of soluble and membrane proteins. Acta Crystallogr D Biol Crystallogr 71:1238–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Huang C-Y, Olieric V, Ma P et al (2016) In meso in situ serial X-ray crystallography of soluble and membrane proteins at cryogenic temperatures. Acta Crystallogr D Biol Crystallogr 72:93–112

    Article  CAS  Google Scholar 

  87. Murray TD, Lyubimov AY, Ogata CM et al (2015) A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions. Acta Crystallogr D Biol Crystallogr 71:1987–1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lyubimov AY, Murray TD, Koehl A et al (2015) Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array. Acta Crystallogr D Biol Crystallogr 71:928–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Roedig P, Vartiainen I, Duman R et al (2015) A micro-patterned silicon chip as sample holder for macromolecular crystallography experiments with minimal background scattering. Sci Rep 5:10451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kisselman G, Qiu W, Romanov V et al (2011) X-CHIP: an integrated platform for high-throughput protein crystallization and on-the-chip X-ray diffraction data collection. Acta Crystallogr D Biol Crystallogr 67:533–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yadav MK, Gerdts CJ, Sanishvili R et al (2005) In situ data collection and structure refinement from microcapillary protein crystallization. J Appl Crystallogr 38:900–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gerdts CJ, Elliott M, Lovell S et al (2008) The plug-based nanovolume Microcapillary Protein Crystallization System (MPCS). Acta Crystallogr D Biol Crystallogr 64:1116–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Baxter EL, Aguila L, Alonso-Mori R et al (2016) High-density grids for efficient data collection from multiple crystals. Acta Crystallogr D Biol Crystallogr 72:2–11

    Article  CAS  Google Scholar 

  94. Maeki M, Pawate AS, Yamashita K et al (2015) A method of cryoprotection for protein crystallography by using a microfluidic chip and its application for in situ X-ray diffraction measurements. Anal Chem 87:4194–4200

    Article  CAS  PubMed  Google Scholar 

  95. Pawate AS, Srajer V, Schieferstein J et al (2015) Towards time-resolved serial crystallography in a microfluidic device. Acta Crystallogr F Struct Biol Commun 71:823–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sui S, Wang Y, Kolewe KW et al (2016) Graphene-based microfluidics for serial crystallography. Lab Chip 16:3082–3096

    Article  CAS  PubMed  Google Scholar 

  97. Axford D, Foadi J, Hu N-J et al (2015) Structure determination of an integral membrane protein at room temperature from crystals in situ. Acta Crystallogr D Biol Crystallogr 71:1228–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Boutet S, Lomb L, Williams GJ et al (2012) High-resolution protein structure determination by serial femtosecond crystallography. Science 337:362–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. DePonte DP, Weierstall U, Schmidt K et al (2008) Gas dynamic virtual nozzle for generation of microscopic droplet streams. J Phys D 41:195505

    Article  CAS  Google Scholar 

  100. Johansson LC, Arnlund D, White TA et al (2012) Lipidic phase membrane protein serial femtosecond crystallography. Nat Methods 9:263–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sierra RG, Laksmono H, Kern J et al (2012) Nanoflow electrospinning serial femtosecond crystallography. Acta Crystallogr D Biol Crystallogr 68:1584–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu W, Wacker D, Gati C et al (2013) Serial femtosecond crystallography of G protein-coupled receptors. Science 342:1521–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Stellato F, Oberthur D, Liang M et al (2014) Room-temperature macromolecular serial crystallography using synchrotron radiation. IUCrJ 1:204–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gati C, Bourenkov G, Klinge M et al (2014) Serial crystallography on in vivo grown microcrystals using synchrotron radiation. IUCrJ 1:87–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Roessler CG, Agarwal R, Allaire M et al (2016) Acoustic injectors for drop-on-demand serial femtosecond crystallography. Structure 24:631–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nannenga BL, Shi D, Leslie AGW et al (2014) High-resolution structure determination by continuous-rotation data collection in MicroED. Nat Methods 11:927–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Stevens A, Kovarik L, Abellan P et al (2015) Applying compressive sensing to TEM video: a substantial frame rate increase on any camera. Adv Struct Chem Imaging 1:1–20

    Article  Google Scholar 

  108. Kiefersauer R, Grandl B, Krapp S et al (2014) IR laser-induced protein crystal transformation. Acta Crystallogr D Biol Crystallogr 70:1224–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cheng Y (2015) Single-particle cryo-EM at crystallographic resolution. Cell 161:450–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Becker M, Weckert E (2012) On the possibility of determining structures of membrane proteins in two-dimensional crystals using X-ray free electron lasers. In: Cheng RH, Hammar L (eds) Conformational proteomics of macromolecular architecture. World Scientific, Singapore, pp 133–147

    Google Scholar 

  111. Hirata K, Shinzawa-Itoh K, Yano N et al (2014) Determination of damage-free crystal structure of an X-ray-sensitive protein using an XFEL. Nat Methods 11:734–736

    Article  CAS  PubMed  Google Scholar 

  112. Cohen AE, Soltis SM, González A et al (2014) Goniometer-based femtosecond crystallography with X-ray free electron lasers. Proc Natl Acad Sci U S A 111:17122–17127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig M. Ogata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Becker, M., Kissick, D.J., Ogata, C.M. (2017). Locating and Visualizing Crystals for X-Ray Diffraction Experiments. In: Wlodawer, A., Dauter, Z., Jaskolski, M. (eds) Protein Crystallography. Methods in Molecular Biology, vol 1607. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7000-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7000-1_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6998-2

  • Online ISBN: 978-1-4939-7000-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics