Skip to main content

Protein Crystallization

  • Protocol
  • First Online:
Protein Crystallography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1607))

Abstract

Protein crystallization was discovered by chance nearly 200 years ago and was developed in the late nineteenth century as a powerful purification tool, and a demonstration of chemical purity. The crystallization of proteins, nucleic acids, and large biological complexes, such as viruses, depends on the creation of a solution that is supersaturated in the macromolecule, but exhibits conditions that do not significantly perturb its natural state. Supersaturation is produced through the addition of mild precipitating agents such as neutral salts or polymers, and by manipulation of various parameters that include temperature, ionic strength, and pH. Also important in the crystallization process are factors that can affect the structural state of the macromolecule, such as metal ions, inhibitors, cofactors, or other conventional small molecules. A variety of approaches have been developed that combine the spectrum of factors that effect and promote crystallization, and among the most widely used are vapor diffusion, dialysis, batch, and liquid–liquid diffusion. Successes in macromolecular crystallization have multiplied rapidly in recent years due to the advent of practical, easy-to-use screening kits, and the application of laboratory robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Helliwell JR (1992) Macromolecular crystallography with synchrotron radiation. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  2. Bingel-Erlenmeyer R, Olieric V, Grimshaw J et al (2011) SLS crystallization platform at Beamline X06DA-A fully automated pipeline enabling in situ X-ray diffraction screening. Cryst Growth Des 11:916–923

    Article  CAS  Google Scholar 

  3. Garman EF, Schneider TR (1997) Macromolecular cryocrystallography. J Appl Crystallogr 30:211–237

    Article  Google Scholar 

  4. Pflugrath JW (2004) Macromolecular cryocrystallography—methods for cooling and mounting protein crystals at cryogenic temperatures. Methods 34:415–423

    Article  CAS  PubMed  Google Scholar 

  5. Pflugrath JW (2015) Practical macromolecular cryocrystallography. Acta Crystallogr F Struct Biol Commun 71:622–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Heras B, Edeling MA, Byriel KA et al (2003) Dehydration converts DsbG crystal diffraction from low to high resolution. Structure 11:139–145

    Article  CAS  PubMed  Google Scholar 

  7. Kiefersauer R, Than ME (2000) A novel free-mounting system for protein crystals: transformation and improvement of diffraction power by accurately controlled humidity changes. J Appl Crystallogr 33:1223–1230

    Article  CAS  Google Scholar 

  8. Pflugrath JW (1992) Developments in X-ray detectors. Curr Opin Struct Biol 2:811–815

    Article  CAS  Google Scholar 

  9. Gruner SM, Eikenberry EF, Tate MW (2001) Comparison of X-ray detectors. In: Rossmann MG, Arnold E (eds) International tables for crystallography, vol F. Kluwer Academic Publishers, Dordrecht, pp 143–153

    Chapter  Google Scholar 

  10. Rossmann MG, Arnold E (2001) Crystallography of biological macromolecules, vol F. International tables for crystallography. Dordrecht, Kluwer Academic Publishers

    Google Scholar 

  11. Malkin AJ, Kuznetsov YG, McPherson A (1996) Defect structure of macromolecular crystals. J Struct Biol 117:124–137

    Article  CAS  Google Scholar 

  12. Feigelson RS (1988) The relevance of small molecule crystal growth theories and techniques to the growth of biological macromolecules. J Cryst Growth 90:1–13

    Article  CAS  Google Scholar 

  13. Feher G (1986) Mechanisms of nucleation and growth of protein crystals. J Cryst Growth 76:545–546

    Article  CAS  Google Scholar 

  14. Durbin SD, Feher G (1996) Protein crystallization. Annu Rev Phys Chem 47:171–204

    Article  CAS  PubMed  Google Scholar 

  15. McPherson A (1982) The preparation and analysis of protein crystals. Wiley, New York

    Google Scholar 

  16. McPherson A (1999) Crystallization of biological macromolecules. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  17. McPherson A, Malkin AJ, Kuznetsov YG (1995) The science of macromolecular crystallization. Structure 3(8):759–768

    Article  CAS  PubMed  Google Scholar 

  18. Rosenberger F (1986) Inorganic and protein crystal growth—similarities and differences. J Cryst Growth 76:618

    Article  CAS  Google Scholar 

  19. Kuznetsov YG, Malkin AJ, Greenwood A et al (1995) Interferometric studies of growth kinetics and surface morphology in macromolecular crystal growth. Canavalin, thaumatin and turnip yellow mosaic virus. J Struct Biol 114:184–196

    Article  CAS  Google Scholar 

  20. Malkin AJ, Kuznetsov YG, Glantz W et al (1996) Atomic force microscopy studies of surface morphology and growth kinetics in thaumatin crystallization. J Phys Chem 100:11736–11743

    Article  CAS  Google Scholar 

  21. Malkin AJ, Kuznetsov YG, McPherson A (1997) An in situ investigation of catalase crystallization. Surf Sci 393:95–107

    Article  CAS  Google Scholar 

  22. Chernov AA, Komatsu H (1995) Principles of crystal growth in protein crystallization. In: Bruinsma JPEOSL (ed) Science and technology of crystal growth. Kluwer, Dordrecht, The Netherlands, p 67

    Chapter  Google Scholar 

  23. Vekilov PG, Chernov AA (2002) The physics of protein crystallization. Solid State Phys 57:2–147

    Google Scholar 

  24. Chernov AA (2003) Protein crystals and their growth. J Struct Biol 142:3–21

    Article  CAS  PubMed  Google Scholar 

  25. Rosenberger A (1979) Fundamentals of crystal growth. Springer-Verlag, Berlin

    Book  Google Scholar 

  26. Chernov AA (1984) Modern crystallography III. Crystal growth. Springer-Verlag, Berlin.

    Google Scholar 

  27. Malkin AJ, Kuznetsov YG, Land TA et al (1995) Mechanisms of growth for protein and virus crystals. Nat Struct Biol 2:956–959

    Article  CAS  PubMed  Google Scholar 

  28. McPherson A, Malkin AJ, Kuznetsov YG et al (2001) Atomic force microscopy applications in macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 57:1053–1060

    Article  CAS  PubMed  Google Scholar 

  29. McPherson A, Malkin AJ, Kuznetsov YG (2000) Atomic force microscopy in the study of macromolecular crystal growth. Annu Rev Biophys Biomol Struct 29:361–410

    Article  CAS  PubMed  Google Scholar 

  30. McPherson A, Kuznetsov YG (2014) Mechanisms, kinetics, impurities and defects: consequences in macromolecular crystallization. Acta Crystallogr F Struct Biol Commun 70:384–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kuznetsov Yu G, Malkin A, McPherson A (1998) Atomic force microscopy studies of phase separations in macromolecular systems. Phys Rev B 58:6097–6103

    Article  Google Scholar 

  32. Ten Wolde R, Frenkel D (1997) Enhancement of protein crystal nucleation by critical density fluctuations. Science 277:1975–1978

    Article  PubMed  Google Scholar 

  33. Haas C, Drenth J (1999) Understanding protein crystallization on the basis of the phase diagram. J Cryst Growth 196:388–394

    Article  CAS  Google Scholar 

  34. Piazza R (1999) Interactions in protein solutions near crystallization: a colloid physics approach. J Cryst Growth 196:415–423

    Article  CAS  Google Scholar 

  35. Malkin A, McPherson A (1994) Light scattering investigations of nucleation processes and kinetics of crystallization in macromolecular systems. Acta Crystallogr D Biol Crystallogr 50:385–395

    Article  CAS  PubMed  Google Scholar 

  36. McPherson A, Gavira JA (2014) Introduction to protein crystallization. Acta Crystallogr F Struct Biol Commun 70:2–20

    Article  CAS  PubMed  Google Scholar 

  37. McPherson A, Cudney B (2014) Optimization of crystallization conditions for biological macromolecules. Acta Crystallogr F Struct Biol Commun 70:1445–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ducruix A, Giége R (1992) Crystallization of nucleic acids and proteins, a practical approach. IRL Press, Oxford

    Google Scholar 

  39. Bergfors TM (1999) Protein crystallization: techniques, strategies and tips. International University Line, La Jolla, CA

    Google Scholar 

  40. Bolen DW (2004) Effects of naturally occurring osmolytes on protein stability and solubility: issues important in protein crystallization. Methods 34:312–322

    Article  CAS  PubMed  Google Scholar 

  41. McPherson A, Cudney R, Patel S (2003) The crystallization of proteins, nucleic acids, and viruses for X-ray diffraction analysis. In: Fahnestock SR, Steinbuchel A (eds) Biopolymers, vol 18(16), pp 427–468

    Google Scholar 

  42. Hünefeld FL (1840) Der Chemismus in der thierischen organisation. FA Brockhaus, Leipzig

    Google Scholar 

  43. Jacoby WB (1968) A technique for the crystallization of proteins. Anal Biochem 26:295

    Article  Google Scholar 

  44. Caffrey M (2003) Membrane protein crystallization. J Struct Biol 142:108–132

    Article  CAS  PubMed  Google Scholar 

  45. McPherson A (1976) The growth and preliminary investigation of protein and nucleic acid crystals for X-ray diffraction analysis. Methods Biochem Anal 23:249–345

    CAS  PubMed  Google Scholar 

  46. Chayen NE, Shaw-Stuart PD, Blow DM (1992) Microbatch crystallization under oil: a new technique allowing many small volume crystallization trials. J Cryst Growth 122:176–180

    Article  CAS  Google Scholar 

  47. Salemme FR (1972) A free interface diffusion technique for the crystallization of proteins for X-ray crystallography. Arch Biochem Biophys 151:533–539

    Article  CAS  PubMed  Google Scholar 

  48. Bard J, Ercolani K, Svenson K, Olland A, Somers W (2004) Automated systems for protein crystallization. Methods 34:329–347

    Article  CAS  PubMed  Google Scholar 

  49. Hui R, Edwards A (2003) High-throughput protein crystallization. J Struct Biol 142:154–161

    Article  CAS  PubMed  Google Scholar 

  50. Santarsiero BD, Yegian DT, Lee CC et al (2002) An approach to rapid protein crystallization using nanodroplets. J Appl Crystallogr 35:278–281

    Article  CAS  Google Scholar 

  51. Hosfield D, Palan J, Hilger M et al (2003) A fully integrated protein crystallization platform for small-molecule drug discovery. J Struct Biol 142:207–217

    Article  CAS  PubMed  Google Scholar 

  52. DeLucas LJ, Bray TL, Nagy L, McCombs D, Chernov N, Hamrick D, Cosenza L, Belgovskiy A, Stoops B, Chait A (2003) Efficient protein crystallization. J Struct Biol 142:188–206

    Article  CAS  PubMed  Google Scholar 

  53. Luft JR, Collins RJ, Fehrman NA et al (2003) A deliberate approach to screening for initial crystallization conditions of biological macromolecules. J Struct Biol 142:170–179

    Article  CAS  PubMed  Google Scholar 

  54. Gilliland GL, Tung M, Blakeselee DM et al (1994) Biological macromolecules crystallization database, version 3.0: new features, data and the NASA archive for protein crystal growth data. Acta Crystallogr D Biol Crystallogr 50:408–413

    Article  CAS  PubMed  Google Scholar 

  55. Gilliland GL (1988) A biological macromolecule crystallization database: a basis for a crystallization strategy. J Cryst Growth 90:51–60

    Article  CAS  Google Scholar 

  56. Cohn EJ, Ferry JD (1943) The interactions of proteins with ions and dipolar ions. In: Cohn EJ, Edsall JT (eds) Proteins, amino acids and peptides as ions and dipolar ions. Reinhold, New York, pp 586–622

    Google Scholar 

  57. Cohn EJ, Edsall JT (eds) (1943) Proteins, amino acids and peptides as ions and dipolar ions. Van Nostrand-Reinhold, Princeton, NJ

    Google Scholar 

  58. Collins KD (2004) Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. Methods 34:300–311

    Article  CAS  PubMed  Google Scholar 

  59. Herriott RM (1942) Solubility methods in the study of proteins. Chem Rev 30:413

    Article  CAS  Google Scholar 

  60. Hofmeister F (1888) Zur Lehre von der Wirkung der Saltz. Nauyn—Schniedebergs Arch Exp Pathol Pharmakol 24:247

    Article  Google Scholar 

  61. McPherson A (2001) A comparison of salts for the crystallization of macromolecules. Protein Sci 10:418–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sumner JB, Somers GF (1943) The enzymes. Academic Press, New York

    Google Scholar 

  63. Englard S, Seifter S (1990) Precipitation techniques. Methods Enzymol 182:301–306

    Article  Google Scholar 

  64. Cohn EJ, Hughes WL, Weare JH (1974) Crystallization of serum albumin from ethanol water mixtures. J Am Chem Soc 69:1753–1761

    Article  Google Scholar 

  65. McPherson A (1976) Crystallization of proteins from polyethylene glycol. J Biol Chem 251:3600–6303

    Google Scholar 

  66. Patel S, Cudney R, McPherson A (1995) Polymeric precipitants for the crystallization of macromolecules. Biochem Biophys Res Commun 207:819–828

    Article  CAS  PubMed  Google Scholar 

  67. Ingham KC (1990) Precipitation of proteins with polyethylene glycol. Methods Enzymol 182:301–306

    Article  CAS  PubMed  Google Scholar 

  68. Israelachvili J (1997) The different faces of poly(ehylene glycol). Proc Natl Acad Sci U S A 94:8378–8379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sheth SR, Leckband D (1997) Measurements of attractive forces between proteins and end-grafted poly(ethylene glycol) chains. Proc Natl Acad Sci U S A 94:8399–8404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. McPherson A, Larson SB (2015) A guide to the crystallographic analysis of icosahedral viruses. Crystallogr Rev 21:4–55

    Article  Google Scholar 

  71. Timasheff SN, Arakawa T (1988) Mechanism of protein precipitation and stabilization by co-solvents. J Cryst Growth 90:39–46

    Article  CAS  Google Scholar 

  72. McPherson A, Cudney B (2006) Searching for silver bullets: an alternative strategy for crystallizing macromolecules. J Struct Biol 156:387–406

    Article  CAS  PubMed  Google Scholar 

  73. Granick S (1942) Ferritin: I. Physical and chemical properties of horse spleen ferritin. J Biol Chem 146:451–461

    CAS  Google Scholar 

  74. Giege R, Lorber B, Theobald-Dietrich A (1994) Crystallogenesis of biological macromolecules: facts and perspectives. Acta Crystallogr D Biol Crystallogr 50:339–350

    Article  CAS  PubMed  Google Scholar 

  75. McPherson A, Malkin A, Kuznetsov YG et al (1996) Incorporation of impurities into macromolecular crystals. J Cryst Growth 168:74–92

    Article  CAS  Google Scholar 

  76. Dale GE, Oefner C, D'Arcy A (2003) The protein as a variable in protein crystallization. J Struct Biol 142:88–97

    Article  CAS  PubMed  Google Scholar 

  77. Derewenda ZS (2004) The use of recombinant methods and molecular engineering in protein crystallization. Methods 34:354–363

    Article  CAS  PubMed  Google Scholar 

  78. Derewenda ZS, Vekilov PG (2006) Entropy and surface engineering in protein crystallization. Acta Crystallogr D Biol Crystallogr 62:116–124

    Article  PubMed  Google Scholar 

  79. DeLucas L (ed) (2009) Membrane protein crystallization: current topics in membranes, vol 63. Elsevier, Amsterdam

    Google Scholar 

  80. Loll PJ (2003) Membrane protein structural biology: the high throughput challenge. J Struct Biol 142:144–153

    Article  CAS  PubMed  Google Scholar 

  81. Michel H (ed) (1990) General and practical aspects of membrane protein crystallization. Crystallization of membrane proteins. CRC Press, Boca Raton, FL

    Google Scholar 

  82. Wiener MC (2004) A pedestrian guide to membrane protein crystallization. Methods 34:364–372

    Article  CAS  PubMed  Google Scholar 

  83. Zulauf M (1990) Detergent phenomena in membrane protein crystallization. In: Michel H (ed) Crystallization of membrane proteins. CRC Press, Boca Raton, FL

    Google Scholar 

  84. Garavito RM, Ferguson-Miller S (2001) Detergents as tools in membrane biochemistry. J Biol Chem 276:32403–32406

    Article  CAS  PubMed  Google Scholar 

  85. Hunte C, Jagow G, Schagger H (2003) Membrane protein purification and crystallization: a practical guide. Academic Press, San Diego

    Google Scholar 

  86. Weiner MC (2001) Existing and emergent roles for surfactants in the three-dimensional crystallization of integral membrane proteins. Curr Opin Struct Biol 6:412–419

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander McPherson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

McPherson, A. (2017). Protein Crystallization. In: Wlodawer, A., Dauter, Z., Jaskolski, M. (eds) Protein Crystallography. Methods in Molecular Biology, vol 1607. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7000-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7000-1_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6998-2

  • Online ISBN: 978-1-4939-7000-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics