Skip to main content

Time-Resolved Macromolecular Crystallography at Modern X-Ray Sources

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1607))

Abstract

Time-resolved macromolecular crystallography unifies protein structure determination with chemical kinetics. With the advent of fourth generation X-ray sources the time-resolution can be on the order of 10–40 fs, which opens the ultrafast time scale to structure determination. Fundamental motions and transitions associated with chemical reactions in proteins can now be observed. Moreover, new experimental approaches at synchrotrons allow for the straightforward investigation of all kind of reactions in biological macromolecules. Here, recent developments in the field are reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bourgeois D, Weik M (2009) Kinetic protein crystallography: a tool to watch proteins in action. Crystallogr Rev 15:87–118

    Article  CAS  Google Scholar 

  2. Weik M, Colletier JP (2010) Temperature-dependent macromolecular X-ray crystallography. Acta Crystallogr D Biol Crystallogr 66:437–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nienhaus K, Ostermann A, Nienhaus GU et al (2005) Ligand migration and protein fluctuations in myoglobin mutant L29W. Biochemistry 44:5095–5105

    Article  CAS  PubMed  Google Scholar 

  4. Moffat K (1989) Time-resolved macromolecular crystallography. Annu Rev Biophys Biophys Chem 18:309–332

    Article  CAS  PubMed  Google Scholar 

  5. Moffat K, Szebenyi D, Bilderback D (1984) X-ray Laue diffraction from protein crystals. Science 223:1423–1425

    Article  CAS  PubMed  Google Scholar 

  6. Barker AI, Southworth-Davies RJ, Paithankar KS et al (2009) Room-temperature scavengers for macromolecular crystallography: increased lifetimes and modified dose dependence of the intensity decay. J Synchrotron Radiat 16:205–216

    Article  CAS  PubMed  Google Scholar 

  7. Youngblut M, Judd ET, Srajer V et al (2012) Laue crystal structure of Shewanella oneidensis cytochrome c nitrite reductase from a high-yield expression system. J Biol Inorg Chem 17:647–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schmidt M, Srajer V, Purwar N et al (2012) The kinetic dose limit in room-temperature time-resolved macromolecular crystallography. J Synchrotron Radiat 19:264–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schmidt M (2015) Time-resolved crystallography at X-ray free electron lasers and synchrotron light sources. Synchrotron Radiat News 28:25–30

    Article  Google Scholar 

  10. Schmidt M (2008) Structure based enzyme kinetics by time-resolved X-ray crystallography. In: Zinth W, Braun M, Gilch P (eds) Ultrashort laser pulses in medicine and biology, Biological and medical physics, biomedical engineering. Springer, Berlin

    Google Scholar 

  11. Ren Z, Bourgeois D, Helliwell JR et al (1999) Laue crystallography: coming of age. J Synchrotron Radiat 6:891–917

    Article  CAS  Google Scholar 

  12. Stoddard BL (1998) New results using Laue diffraction and time-resolved crystallography. Curr Opin Struct Biol 8:612–618

    Article  CAS  PubMed  Google Scholar 

  13. Srajer V (2013) Time-resolved macromolecular crystallography in practice at BioCARS, advanced photon source: from data collection to structures of intermediates. In: Howard JAK, Sparkes HA, Raithby PR, Churakov AV (eds) The future of dynamic structural science. Springer, New York, pp 237–251

    Google Scholar 

  14. Schmidt M, Ihee H, Pahl R et al (2005) Protein-ligand interaction probed by time-resolved crystallography. Methods Mol Biol 305:115–154

    CAS  PubMed  Google Scholar 

  15. Bourgeois D, Royant A (2005) Advances in kinetic protein crystallography. Curr Opin Struct Biol 15:538–547

    Article  CAS  PubMed  Google Scholar 

  16. Barends TR, Foucar L, Ardevol A et al (2015) Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science 350:445–450

    Article  CAS  PubMed  Google Scholar 

  17. Bionta MR, Lemke HT, Cryan JP et al (2011) Spectral encoding of X-ray/optical relative delay. Opt Express 19:21855–21865

    Article  CAS  PubMed  Google Scholar 

  18. Hartmann N, Helml W, Galler A et al (2014) Sub-femtosecond precision measurement of relative X-ray arrival time for free-electron lasers. Nat Photonics 8:706–709

    Article  CAS  Google Scholar 

  19. Pande K, Hutchison CDM, Groenhof G et al (2016) Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science 352:725–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Auldridge ME, Forest KT (2011) Bacterial phytochromes: more than meets the light. Crit Rev Biochem Mol Biol 46:67–88

    Article  CAS  PubMed  Google Scholar 

  21. Schmidt M, Patel A, Zhao Y et al (2007) Structural basis for the photochemistry of alpha-phycoerythrocyanin. Biochemistry 46:416–423

    Article  CAS  PubMed  Google Scholar 

  22. Purwar N, Tenboer J, Tripathi S et al (2013) Spectroscopic studies of model photo-receptors: validation of a nanosecond time-resolved micro-spectrophotometer design using photoactive yellow protein and α-phycoerythrocyanin. Int J Mol Sci 14:18881–18898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moglich A, Ayers RA, Moffat K (2010) Addition at the molecular level: signal integration in designed Per-ARNT-Sim receptor proteins. J Mol Biol 400:477–486

    Article  PubMed  Google Scholar 

  24. Moffat K (2014) Time-resolved crystallography and protein design: signalling photoreceptors and optogenetics. Phil Trans R Soc London B369:20130568

    Article  Google Scholar 

  25. Schlichting I, Almo SC, Rapp G et al (1990) Time-resolved X-ray crystallographic study of the conformational change in Ha-Ras p21 protein on GTP hydrolysis. Nature 345:309–315

    Article  CAS  PubMed  Google Scholar 

  26. Adams SR, Tsien RY (1993) Controlling cell chemistry with caged compounds. Annu Rev Physiol 55:755–784

    Article  CAS  PubMed  Google Scholar 

  27. Goelder M, Givens R (eds) (2005) Dynamic studies in biology: phototriggers, photoswitches and caged biomolecules. Wiley-VCH, Weinheim

    Google Scholar 

  28. Ursby T, Weik M, Fioravanti E et al (2002) Cryophotolysis of caged compounds: a technique for trapping intermediate states in protein crystals. Acta Crystallogr D Biol Crystallogr 58:607–614

    Article  PubMed  Google Scholar 

  29. Bourgeois D, Weik M (2005) New perspectives in kinetic protein crystallography using caged compounds. In: Dynamic studies in biology: phototriggers, photoswitches and caged biomolecules. Wiley-VCH, Weinheim, pp 410–432

    Google Scholar 

  30. Kurisu G, Sugimoto A, Kai Y et al (1997) A flow cell suitable for time-resolved X-ray crystallography by the Laue method. J Appl Crystallogr 30:555–556

    Article  CAS  Google Scholar 

  31. Moffat K, Chen Y, Ng KM et al (1992) Time-resolved crystallography—principles, problems and practice. Philos Trans R Soc A340:175–189

    Article  Google Scholar 

  32. Srajer V, Teng TY, Ursby T et al (1996) Photolysis of the carbon monoxide complex of myoglobin: nanosecond time-resolved crystallography. Science 274:1726–1729

    Article  CAS  PubMed  Google Scholar 

  33. Ren Z, Perman B, Srajer V et al (2001) A molecular movie at 1.8 a resolution displays the photocycle of photoactive yellow protein, a eubacterial blue-light receptor, from nanoseconds to seconds. Biochemistry 40:13788–13801

    Article  CAS  PubMed  Google Scholar 

  34. Srajer V, Ren Z, Teng TY et al (2001) Protein conformational relaxation and ligand migration in myoglobin: a nanosecond to millisecond molecular movie from time-resolved Laue X-ray diffraction. Biochemistry 40:13802–13815

    Article  CAS  PubMed  Google Scholar 

  35. Srajer V, Crosson S, Schmidt M et al (2000) Extraction of accurate structure-factor amplitudes from Laue data: wavelength normalization with wiggler and undulator X-ray sources. J Synchrotron Radiat 7:236–244

    Article  CAS  PubMed  Google Scholar 

  36. Graber T, Anderson S, Brewer H et al (2011) BioCARS: a synchrotron resource for time-resolved X-ray science. J Synchrotron Radiat 18:658–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ihee H, Rajagopal S, Srajer V et al (2005) Visualizing reaction pathways in photoactive yellow protein from nanoseconds to seconds. Proc Natl Acad Sci U S A 102:7145–7150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schmidt M, Srajer V, Henning R et al (2013) Protein energy landscapes determined by five-dimensional crystallography. Acta Crystallogr D Biol Crystallogr 69:2534–2542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jung YO, Lee JH, Kim J et al (2013) Volume-conserving trans-cis isomerization pathways in photoactive yellow protein visualized by picosecond X-ray crystallography. Nat Chem 5:212–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schotte F, Cho HS, Kaila VR et al (2012) Watching a signaling protein function in real time via 100-ps time-resolved Laue crystallography. Proc Natl Acad Sci U S A 109:19256–19261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ren Z, Moffat K (1995) Quantitative analysis of synchrotron Laue diffraction patterns in macromolecular crystallography. J Appl Crystallogr 28:461–481

    Article  CAS  Google Scholar 

  42. Schmidt M, Rajagopal S, Ren Z et al (2003) Application of singular value decomposition to the analysis of time-resolved macromolecular X-ray data. Biophys J 84:2112–2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Henry ER, Hofrichter J (1992) Singular value decomposition—application to analysis of experimental data. Meth Enzymol 210:129–192

    Article  CAS  Google Scholar 

  44. Terwilliger TC, Berendzen J (1996) Bayesian difference refinement. Acta Crystallogr D Biol Crystallogr 52:1004–1011

    Article  CAS  PubMed  Google Scholar 

  45. Tripathi S, Srajer V, Purwar N et al (2012) pH dependence of the photoactive yellow protein photocycle investigated by time-resolved crystallography. Biophys J 102:325–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Emsley P, Lohkamp B, Scott WG et al (2010) Features and development of coot. Acta Crystallogr D Biol Crystallogr 66:486–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Murshudov GN, Skubak P, Lebedev AA et al (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67:355–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schmidt M, Graber T, Henning R et al (2010) Five-dimensional crystallography. Acta Crystallogr A 66:198–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Holton JM, Frankel KA (2010) The minimum crystal size needed for a complete diffraction data set. Acta Crystallogr D Biol Crystallogr 66:393–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lomb L, Barends TR, Kassemeyer S et al (2011) Radiation damage in protein serial femtosecond crystallography using an X-ray free-electron laser. Phys Rev B84:214111

    Article  Google Scholar 

  51. Chapman HN, Barty A, Bogan MJ et al (2006) Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nat Phys 2:839–843

    Article  CAS  Google Scholar 

  52. Neutze R, Wouts R, van der Spoel D et al (2000) Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406:752–757

    Article  CAS  PubMed  Google Scholar 

  53. Chapman HN, Fromme P, Barty A et al (2011) Femtosecond X-ray protein nanocrystallography. Nature 470:73–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Boutet S, Lomb L, Williams GJ et al (2012) High-resolution protein structure determination by serial femtosecond crystallography. Science 337:362–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Weierstall U, Spence JC, Doak RB (2012) Injector for scattering measurements on fully solvated biospecies. Rev Sci Instrum 83:035108

    Article  CAS  PubMed  Google Scholar 

  56. Weierstall U, James D, Wang C et al (2014) Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat Commun 5:3309

    Article  PubMed  PubMed Central  Google Scholar 

  57. Conrad C, Basu S, James D et al (2015) A novel inert crystal delivery medium for serial femtosecond crystallography. IUCrJ 2:421–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sugahara M, Mizohata E, Nango E et al (2015) Grease matrix as a versatile carrier of proteins for serial crystallography. Nat Methods 12:61–63

    Article  CAS  PubMed  Google Scholar 

  59. Sierra RG, Laksmono H, Kern J et al (2012) Nanoflow electrospinning serial femtosecond crystallography. Acta Crystallogr D Biol Crystallogr 68:1584–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mueller C, Marx A, Epp SW et al (2015) Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography. Struct Dyn 2:054302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hunter MS, Segelke B, Messerschmidt M et al (2014) Fixed-target protein serial microcrystallography with an X-ray free electron laser. Sci Rep 4:6026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zarrine-Afsar A, Barends TRM, Muller C et al (2012) Crystallography on a chip. Acta Crystallogr D Biol Crystallogr 68:321–323

    Article  CAS  PubMed  Google Scholar 

  63. Roessler CG, Agarwal R, Allaire M et al (2016) Acoustic injectors for drop-on-demand serial femtosecond crystallography. Structure 24:631–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kirian RA, White TA, Holton JM et al (2011) Structure-factor analysis of femtosecond microdiffraction patterns from protein nanocrystals. Acta Crystallogr A 67:131–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. White TA, Kirian RA, Martin AV et al (2012) CrystFEL: a software suite for snapshot serial crystallography. J Appl Crystallogr 45:335–341

    Article  CAS  Google Scholar 

  66. Tenboer J, Basu S, Zatsepin N et al (2014) Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science 346:1242–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Aquila A, Hunter MS, Doak RB et al (2012) Time-resolved protein nanocrystallography using an X-ray free-electron laser. Opt Express 20:2706–2716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kupitz C, Basu S, Grotjohann I et al (2014) Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature 513:5

    Article  Google Scholar 

  69. Lincoln CN, Fitzpatrick AE, van Thor JJ (2012) Photoisomerisation quantum yield and non-linear cross-sections with femtosecond excitation of the photoactive yellow protein. Phys Chem Chem Phys 14:15752–15764

    Article  CAS  PubMed  Google Scholar 

  70. Nakamura R, Hamada N, Ichida H et al (2007) Coherent oscillations in ultrafast fluorescence of photoactive yellow protein. J Chem Phys 127:215102

    Article  PubMed  Google Scholar 

  71. Creelman M, Kumauchi M, Hoff WD et al (2014) Chromophore dynamics in the PYP photocycle from femtosecond stimulated Raman spectroscopy. J Phys Chem B118:659–667

    Article  Google Scholar 

  72. Hutchison CDM, Tenboer J, Kupitz C et al (2016) Photocycle populations with femtosecond excitation of crystalline photoactive yellow protein. J Chem Phys Lett 654:63–71

    Article  CAS  Google Scholar 

  73. Liang M, Williams GJ, Messerschmidt M et al (2015) The coherent X-ray imaging instrument at the Linac coherent light source. J Synchrotron Radiat 22:514–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Groenhof G, Bouxin-Cademartory M, Hess B et al (2004) Photoactivation of the photoactive yellow protein: why photon absorption triggers a trans-to-cis isomerization of the chromophore in the protein. J Am Chem Soc 126:4228–4233

    Article  CAS  PubMed  Google Scholar 

  75. Groenhof G (2013) Introduction to QM/MM simulations. Methods Mol Biol 924:43–66

    Article  CAS  PubMed  Google Scholar 

  76. Polli D, Altoe P, Weingart O et al (2010) Conical intersection dynamics of the primary photoisomerization event in vision. Nature 467:440–443

    Article  CAS  PubMed  Google Scholar 

  77. Johnson PJ, Halpin A, Morizumi T et al (2015) Local vibrational coherences drive the primary photochemistry of vision. Nat Chem 7:980–986

    Article  CAS  PubMed  Google Scholar 

  78. Blancafort L (2014) Photochemistry and photophysics at extended seams of conical intersection. Chemphyschem 15:3166–3181

    Article  CAS  PubMed  Google Scholar 

  79. Schmidt M (2013) Mix and inject, reaction initiation by diffusion for time-resolved macromolecular crystallography. Adv Condens Mat Phys 2013:1–10

    Article  Google Scholar 

  80. Botha S, Nass K, Barends TR et al (2015) Room-temperature serial crystallography at synchrotron X-ray sources using slowly flowing free-standing high-viscosity microstreams. Acta Crystallogr D Biol Crystallogr 71:387–397

    Article  CAS  PubMed  Google Scholar 

  81. Stellato F, Oberthuer D, Mengning L et al (2014) Room-temperature macromolecular serial crystallography using synchrotron radiation. IUCrJ 1:204–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pawate AS, Srajer V, Schieferstein J et al (2015) Towards time-resolved serial crystallography in a microfluidic device. Acta Crystallogr F Struct Biol Commun 71:823–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Perry SL, Guha S, Pawate AS et al (2014) Serial Laue diffraction on a microfluidic crystallization device. J Appl Crystallogr 47:1975–1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nogly P, James D, Wang D et al (2015) Lipidic cubic phase serial millisecond crystallography using synchrotron radiation. IUCrJ 2:168–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

M.S. thanks Vukica Šrajer for reading, and commenting on, an earlier version of the manuscript. This work is supported by the BioXFEL Science and Technology Center (NSF grant 1231306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Schmidt, M. (2017). Time-Resolved Macromolecular Crystallography at Modern X-Ray Sources. In: Wlodawer, A., Dauter, Z., Jaskolski, M. (eds) Protein Crystallography. Methods in Molecular Biology, vol 1607. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7000-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7000-1_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6998-2

  • Online ISBN: 978-1-4939-7000-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics