Skip to main content

Detecting Protein ADP-Ribosylation Using a Clickable Aminooxy Probe

  • Protocol
  • First Online:
Poly(ADP-Ribose) Polymerase

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1608))

Abstract

ADP-ribosylation, a posttranslational modification catalyzed by a family of enzymes known as poly(ADP-ribose) polymerases (PARPs, 17 in humans), regulates diverse cellular processes. To aid in understanding the functions of ADP-ribosylation in cells, we developed a clickable aminooxy probe, AO-alkyne, which detects ADP-ribosylation of acidic amino acids. AO-alkyne can be used to detect auto-ADP-ribosylation of PARP10 in cells following Cu-catalyzed click conjugation to an azide reporter. This method can be extended to other PARP family members that catalyze ADP-ribosylation on acidic amino acids, providing a convenient and direct readout of PARP activity in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gibson BA, Kraus WL (2012) New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Biol 13:411–424. doi:10.1038/nrm3376

    Article  CAS  PubMed  Google Scholar 

  2. Vyas S, Chesarone-Cataldo M, Todorova T et al (2013) A systematic analysis of the PARP protein family identifies new functions critical for cell physiology. Nat Commun 4:2240. doi:10.1038/ncomms3240

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhang J (1997) Use of biotinylated NAD to label and purify ADP-ribosylated proteins. Methods Enzymol 280:255–265. doi:10.1016/S0076-6879(97)80117-6

    Article  CAS  PubMed  Google Scholar 

  4. Jiang H, Kim JH, Frizzell KM et al (2010) Clickable NAD analogues for labeling substrate proteins of poly(ADP-ribose) polymerases. J Am Chem Soc 132:9363–9372. doi:10.1021/ja101588r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wallrodt S, Buntz A, Wang Y et al (2016) Bioorthogonally functionalized NAD+ analogues for in-cell visualization of poly(ADP-ribose) formation. Angew Chem Int Ed 55:7660–7664. doi:10.1002/anie.201600464

    Article  CAS  Google Scholar 

  6. Morgan RK, Cohen MS (2015) A clickable aminooxy probe for monitoring cellular ADP-ribosylation. ACS Chem Biol 10:1778–1784. doi:10.1021/acschembio.5b00213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kleine H, Poreba E, Lesniewicz K et al (2008) Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. Mol Cell 32:57–69. doi:10.1016/j.molcel.2008.08.009

    Article  CAS  PubMed  Google Scholar 

  8. Yuen LH, Saxena NS, Park HS et al (2016) Dark hydrazone fluorescence labeling agents enable imaging of cellular aldehydic load. ACS Chem Biol 11:2312–2319. doi:10.1021/acschembio.6b00269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wahlberg E, Karlberg T, Kouznetsova E et al (2012) Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors. Nat Biotechnol 30:283–288. doi:10.1038/nbt.2121

    Article  CAS  PubMed  Google Scholar 

  10. Vyas S, Matic I, Uchima L et al (2014) Family-wide analysis of poly(ADP-ribose) polymerase activity. Nat Commun 5:4426. doi:10.1038/ncomms5426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carter-O’Connell I, Jin H, Morgan RK et al (2014) Engineering the substrate specificity of ADP-ribosyltransferases for identifying direct protein targets. J Am Chem Soc 136:5201–5204. doi:10.1021/ja412897a

    Article  PubMed  PubMed Central  Google Scholar 

  12. Carter-O’Connell I, Cohen MS (2015) Identifying direct protein targets of poly-ADP-ribose polymerases (PARPs) using engineered PARP variants-orthogonal nicotinamide adenine dinucleotide (NAD+) analog pairs. Curr Protoc Chem Biol 7:121–139. doi:10.1002/9780470559277.ch140259

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Cohen Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Morgan, R.K., Cohen, M.S. (2017). Detecting Protein ADP-Ribosylation Using a Clickable Aminooxy Probe. In: Tulin, A. (eds) Poly(ADP-Ribose) Polymerase. Methods in Molecular Biology, vol 1608. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6993-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6993-7_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6992-0

  • Online ISBN: 978-1-4939-6993-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics