Skip to main content

Purification of Recombinant Human PARG and Activity Assays

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1608))

Abstract

The purification of Poly(ADP-ribose) glycohydrolase (PARG) from overexpressing bacteria Escherichia coli is described here to a fast and reproducible one chromatographic step protocol. After cell lysis, GST-PARG-fusion proteins from the crude extract are affinity purified by a Glutathione 4B Sepharose chromatographic step. The PARG proteins are then freed from their GST-fusion by overnight enzymatic cleavage using the preScission protease. As described in the protocol, more than 500 μg of highly active human PARG can be obtained from 1.5 L of E. coli culture.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Amé JC, Jacobson EL, Jacobson MK (1999) Molecular heterogeneity and regulation of poly(ADP-ribose) glycohydrolase. Mol Cell Biochem 193:75–81

    Article  PubMed  Google Scholar 

  2. Meyer-Ficca ML, Meyer RG, Coyle DL, Jacobson EL, Jacobson MK (2004) Human poly(ADP-ribose) glycohydrolase is expressed in alternative splice variants yielding isoforms that localize to different cell compartments. Exp Cell Res 297:521–532

    Article  CAS  PubMed  Google Scholar 

  3. Amé JC, Fouquerel E, Gauthier LR, Biard D, Boussin FD, Dantzer F, de Murcia G, Schreiber V (2009) Radiation-induced mitotic catastrophe in PARG-deficient cells. J Cell Sci 122:1990–2002

    Article  PubMed  Google Scholar 

  4. Andrabi SA, Kim NS, Yu SW, Wang H, Koh DW, Sasaki M, Klaus JA, Otsuka T, Zhang Z, Koehler RC, Hurn PD, Poirier GG, Dawson VL, Dawson TM (2006) Poly(ADP-ribose) (PAR) polymer is a death signal. Proc Natl Acad Sci U S A 103:18308–18313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Feng X, Koh DW (2013) Roles of poly(ADP-ribose) glycohydrolase in DNA damage and apoptosis. Int Rev Cell Mol Biol 304:227–281

    Article  CAS  PubMed  Google Scholar 

  6. Stowell A, James DI, Waddell ID (2016) An HTS-compatible HTRF assay measuring the glycohydrolase activity of human PARG. Anal Biochem 503:58–64. doi:10.1016/j.ab.2016.03.016

    Article  CAS  PubMed  Google Scholar 

  7. Lambrecht MJ, Brichacek M, Barkauskaite E, Ariza A, Ahel I, Hergenrother PJ (2015) Synthesis of dimeric ADP-ribose and its structure with human poly(ADP-ribose) glycohydrolase. J Am Chem Soc 137:3558–3564

    Article  CAS  PubMed  Google Scholar 

  8. Islam R, Koizumi F, Kodera Y, Inoue K, Okawara T, Masutani M (2014) Design and synthesis of phenolic hydrazide hydrazones as potent poly(ADP-ribose) glycohydrolase (PARG) inhibitors. Bioorg Med Chem Lett 24:3802–3806

    Article  CAS  PubMed  Google Scholar 

  9. Wang Z, Gagné JP, Poirier GG, Xu W (2014) Crystallographic and biochemical analysis of the mouse poly(ADP-ribose) glycohydrolase. PLoS One 9:e86010

    Article  PubMed  PubMed Central  Google Scholar 

  10. Barkauskaite E, Brassington A, Tan ES, Warwicker J, Dunstan MS, Banos B, Lafite P, Ahel M, Mitchison TJ, Ahel I, Leys D (2013) Visualization of poly(ADP-ribose) bound to PARG reveals inherent balance between exo- and endo-glycohydrolase activities. Nat Commun 4:2164–2171

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kim IK, Kiefer JR, Ho CMW, Stegeman RA, Classen S, Tainer JA, Ellenberger T (2012) Structure of mammalian poly(ADP-ribose) glycohydrolase reveals a flexible tyrosine clasp as a substrate-binding element. Nat Struct Mol Biol 19:653–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Slade D, Dunstan MS, Barkauskaite E, Weston R, Lafite P, Dixon N, Ahel M, Leys D, Ahel I (2011) The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Nature 477:616–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tucker JA, Bennett N, Brassington C, Durant ST, Hassall G, Holdgate G, McAlister M, Nissink JWM, Truman C, Watson M (2012) Structures of the human poly (ADP-ribose) glycohydrolase catalytic domain confirm catalytic mechanism and explain inhibition by ADP-HPD derivatives. PLoS One 7:e50889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Christophe Amé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Amé, JC., Héberlé, É., Camuzeaux, B., Dantzer, F., Schreiber, V. (2017). Purification of Recombinant Human PARG and Activity Assays. In: Tulin, A. (eds) Poly(ADP-Ribose) Polymerase. Methods in Molecular Biology, vol 1608. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6993-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6993-7_25

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6992-0

  • Online ISBN: 978-1-4939-6993-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics