Skip to main content

Application of Hydrogel Nanoparticles for the Capture, Concentration, and Preservation of Low-Abundance Biomarkers

  • Protocol
  • First Online:
Book cover Molecular Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1606))

Abstract

In the recent years, a lot of emphasis has been placed on the discovery and detection of clinically relevant biomarkers. Biomarkers are crucial for the early detection of several diseases, and they play an important role in the improvement of current treatments, thus reducing patient mortality rate. Because biofluids account to 60% of the body mass, they represent a goldmine of significant biomarkers. Unfortunately, because of their low concentration in body fluids, their lability, and the presence of high abundance proteins (i.e., albumin and immunoglobulins), low abundance biomarkers are difficult to detect with mass spectrometry or immunoassays. Nanoparticles made of poly(N-isopropylacrylamide) (NIPAm) and functionalized with affinity reactive baits allow researchers to overcome these physiological barriers and in one single step capture, concentrate, and preserve labile biomarkers in complex body fluids (i.e. urine, blood, sweat, CSF). Although hydrogel nanoparticles have been largely studied and used as a drug delivery tool, our application focuses on their capturing abilities instead of the releasing of specific drug molecules. Once the functionalized nanoparticles are incubated with a biological fluid, small biomarkers are captured by the affinity baits while unwanted high abundance analytes are excluded. The potentially relevant biomarkers are then concentrated into small volumes. The concentration factor (up to 10,000-fold) successfully enhances the detection sensitivity of mass spectrometry and immunoassays allowing the detection of previously invisible proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207. doi:10.1038/nature01511

    Article  CAS  PubMed  Google Scholar 

  2. Poste G (2011) Bring on the biomarkers. Nature 469(7329):156–157. doi:10.1038/469156a

    Article  CAS  PubMed  Google Scholar 

  3. Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1(11):845–867

    Article  CAS  PubMed  Google Scholar 

  4. Kuhn E, Addona T, Keshishian H, Burgess M, Mani DR, Lee RT, Sabatine MS, Gerszten RE, Carr SA (2009) Developing multiplexed assays for troponin I and interleukin-33 in plasma by peptide immunoaffinity enrichment and targeted mass spectrometry. Clin Chem 55(6):1108–1117. doi:10.1373/clinchem.2009.123935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tamburro D, Fredolini C, Espina V, Douglas TA, Ranganathan A, Ilag L, Zhou W, Russo P, Espina BH, Muto G, Petricoin EF 3rd, Liotta LA, Luchini A (2011) Multifunctional core-shell nanoparticles: discovery of previously invisible biomarkers. J Am Chem Soc 133(47):19178–19188. doi:10.1021/ja207515j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Merrell K, Southwick K, Graves SW, Esplin MS, Lewis NE, Thulin CD (2004) Analysis of low-abundance, low-molecular-weight serum proteins using mass spectrometry. J Biomol Tech 15(4):238–248

    PubMed  PubMed Central  Google Scholar 

  7. Petricoin EF, Belluco C, Araujo RP, Liotta LA (2006) The blood peptidome: a higher dimension of information content for cancer biomarker discovery. Nat Rev Cancer 6(12):961–967. doi:10.1038/nrc2011

    Article  CAS  PubMed  Google Scholar 

  8. Conrads TP, Hood BL, Veenstra TD (2006) Sampling and analytical strategies for biomarker discovery using mass spectrometry. BioTechniques 40(6):799–805

    Article  CAS  PubMed  Google Scholar 

  9. Lopez MF, Mikulskis A, Kuzdzal S, Bennett DA, Kelly J, Golenko E, DiCesare J, Denoyer E, Patton WF, Ediger R, Sapp L, Ziegert T, Lynch C, Kramer S, Whiteley GR, Wall MR, Mannion DP, Della Cioppa G, Rakitan JS, Wolfe GM (2005) High-resolution serum proteomic profiling of Alzheimer disease samples reveals disease-specific, carrier-protein-bound mass signatures. Clin Chem 51(10):1946–1954. doi:10.1373/clinchem.2005.053090

    Article  CAS  PubMed  Google Scholar 

  10. Lopez MF, Mikulskis A, Kuzdzal S, Golenko E, Petricoin EF 3rd, Liotta LA, Patton WF, Whiteley GR, Rosenblatt K, Gurnani P, Nandi A, Neill S, Cullen S, O’Gorman M, Sarracino D, Lynch C, Johnson A, McKenzie W, Fishman D (2007) A novel, high-throughput workflow for discovery and identification of serum carrier protein-bound peptide biomarker candidates in ovarian cancer samples. Clin Chem 53(6):1067–1074. doi:10.1373/clinchem.2006.080721

    Article  CAS  PubMed  Google Scholar 

  11. Lowenthal MS, Mehta AI, Frogale K, Bandle RW, Araujo RP, Hood BL, Veenstra TD, Conrads TP, Goldsmith P, Fishman D, Petricoin EF 3rd, Liotta LA (2005) Analysis of albumin-associated peptides and proteins from ovarian cancer patients. Clin Chem 51(10):1933–1945. doi:10.1373/clinchem.2005.052944

    Article  CAS  PubMed  Google Scholar 

  12. Marshall J, Kupchak P, Zhu W, Yantha J, Vrees T, Furesz S, Jacks K, Smith C, Kireeva I, Zhang R, Takahashi M, Stanton E, Jackowski G (2003) Processing of serum proteins underlies the mass spectral fingerprinting of myocardial infarction. J Proteome Res 2(4):361–372

    Article  CAS  PubMed  Google Scholar 

  13. Longo C, Gambara G, Espina V, Luchini A, Bishop B, Patanarut AS, Petricoin EF 3rd, Beretti F, Ferrari B, Garaci E, De Pol A, Pellacani G, Liotta LA (2011) A novel biomarker harvesting nanotechnology identifies Bak as a candidate melanoma biomarker in serum. Exp Dermatol 20(1):29–34. doi:10.1111/j.1600-0625.2010.01187.x

    Article  PubMed  PubMed Central  Google Scholar 

  14. Luchini A, Longo C, Espina V, Petricoin EF 3rd, Liotta LA (2009) Nanoparticle technology: addressing the fundamental roadblocks to protein biomarker discovery. J Mater Chem 19(29):5071–5077. doi:10.1039/b822264a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Magni R, Espina BH, Shah K, Lepene B, Mayuga C, Douglas TA, Espina V, Rucker S, Dunlap R, Petricoin EF, Kilavos MF, Poretz DM, Irwin GR, Shor SM, Liotta LA, Luchini A (2015) Application of nanotrap technology for high sensitivity measurement of urinary outer surface protein A carboxyl-terminus domain in early stage Lyme borreliosis. J Transl Med 13:346. doi:10.1186/s12967-015-0701-z

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fredolini C, Meani F, Reeder KA, Rucker S, Patanarut A, Botterell PJ, Bishop B, Longo C, Espina V, Petricoin EF 3rd, Liotta LA, Luchini A (2008) Concentration and preservation of very low abundance biomarkers in urine, such as human growth hormone (hgH), by Cibacron Blue F3G-A loaded hydrogel particles. Nano Res 1(6):502–518. doi:10.1007/s12274-008-8054-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Luchini A, Geho DH, Bishop B, Tran D, Xia C, Dufour RL, Jones CD, Espina V, Patanarut A, Zhou W, Ross MM, Tessitore A, Petricoin EF 3rd, Liotta LA (2008) Smart hydrogel particles: biomarker harvesting: one-step affinity purification, size exclusion, and protection against degradation. Nano Lett 8(1):350–361. doi:10.1021/nl072174l

    Article  CAS  PubMed  Google Scholar 

  18. Castro-Sesquen YE, Gilman RH, Galdos-Cardenas G, Ferrufino L, Sanchez G, Valencia Ayala E, Liotta L, Bern C, Luchini A, Working Group on Chagas Disease in Bolivia and Peru (2014) Use of a novel chagas urine nanoparticle test (chunap) for diagnosis of congenital chagas disease. PLoS Negl Trop Dis 8(10):e3211. doi:10.1371/journal.pntd.0003211

    Article  PubMed  PubMed Central  Google Scholar 

  19. Luchini A, Tamburro D, Magni R, Fredolini C, Espina V, Bosch J, Garaci E, Petricoin EF 3rd, Liotta LA (2012) Application of analyte harvesting nanoparticle technology to the measurement of urinary HGH in healthy individuals. J Sports Med Doping Stud 2(6). doi:10.4172/2161-0673.1000e127

  20. Shafagati N, Narayanan A, Baer A, Fite K, Pinkham C, Bailey C, Kashanchi F, Lepene B, Kehn-Hall K (2013) The use of NanoTrap particles as a sample enrichment method to enhance the detection of Rift Valley Fever Virus. PLoS Negl Trop Dis 7(7):e2296. doi:10.1371/journal.pntd.0002296

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fredolini C, Meani F, Luchini A, Zhou W, Russo P, Ross M, Patanarut A, Tamburro D, Gambara G, Ornstein D, Odicino F, Ragnoli M, Ravaggi A, Novelli F, Collura D, D’Urso L, Muto G, Belluco C, Pecorelli S, Liotta L, Petricoin EF 3rd (2010) Investigation of the ovarian and prostate cancer peptidome for candidate early detection markers using a novel nanoparticle biomarker capture technology. AAPS J 12(4):504–518. doi:10.1208/s12248-010-9211-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by George Mason University, the National Institutes of Health (NIH) Innovative Molecular Analysis Technologies (IMAT) program through a grant to Lance Liotta and Alessandra Luchini (1R33CA173359-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben Magni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Magni, R., Luchini, A. (2017). Application of Hydrogel Nanoparticles for the Capture, Concentration, and Preservation of Low-Abundance Biomarkers. In: Espina, V. (eds) Molecular Profiling. Methods in Molecular Biology, vol 1606. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6990-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6990-6_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6989-0

  • Online ISBN: 978-1-4939-6990-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics