Skip to main content

Purification of Zygotically Transcribed RNA through Metabolic Labeling of Early Zebrafish Embryos

  • Protocol
  • First Online:
Zygotic Genome Activation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1605))

Abstract

Early embryonic development in all known metazoans is characterized by a transcriptionally silent phase, during which development is under control of maternally loaded protein and RNA. The zygotic genome becomes transcriptionally active after a series of rapid reductive cleavage divisions. In this chapter, we present a method to metabolically label, purify, and analyze newly transcribed RNAs in early zebrafish embryos. We previously used this method, which is adaptable to other embryos and systems, to determine the onset of zygotic transcription activation and identify the first zygotic transcripts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kane DA, Kimmel CB (1993) The zebrafish midblastula transition. Development 119:447–456

    CAS  PubMed  Google Scholar 

  2. Heyn P, Kircher M, Dahl A et al (2014) The earliest transcribed zygotic genes are short, newly evolved, and different across species. Cell Rep 6:285–292. doi:10.1016/j.celrep.2013.12.030

    Article  CAS  PubMed  Google Scholar 

  3. Harvey SA, Sealy I, Kettleborough R et al (2013) Identification of the zebrafish maternal and paternal transcriptomes. Development 140:2703–2710. doi:10.1242/dev.095091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee MT, Bonneau AR, Takacs CM et al (2013) Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. Nature 503:360–364. doi:10.1038/nature12632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Leichsenring M, Maes J, Mössner R et al (2013) Pou5f1 transcription factor controls zygotic gene activation in vertebrates. Science 341:1005–1009. doi:10.1126/science.1242527

    Article  CAS  PubMed  Google Scholar 

  6. Vastenhouw NL, Zhang Y, Woods IG et al (2010) Chromatin signature of embryonic pluripotency is established during genome activation. Nature 464:922–926. doi:10.1038/nature08866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Giraldez AJ, Mishima Y, Rihel J et al (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312:75–79. doi:10.1126/science.1122689

    Article  CAS  PubMed  Google Scholar 

  8. Tadros W, Lipshitz HD (2009) The maternal-to-zygotic transition: a play in two acts. Development 136:3033–3042. doi:10.1242/dev.033183

    Article  CAS  PubMed  Google Scholar 

  9. Aanes H, Winata CL, Lin CH et al (2011) Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition. Genome Res 21:1328–1338. doi:10.1101/gr.116012.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee MT, Bonneau AR, Giraldez AJ (2014) Zygotic genome activation during the maternal-to-zygotic transition. Annu Rev Cell Dev Biol 30:581–613. doi:10.1146/annurev-cellbio-100913-013027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang M, Skirkanich J, Lampson M, Klein P (2016) Cell cycle remodeling and zygotic gene activation at the midblastula transition. In: Pelegri FJ, Danilchek M, Sutherland A (eds) Vertebrate development: maternal to zygotic control. Springer Nature, New York, pp 441–487

    Google Scholar 

  12. Melvin WT, Milne HB, Slater AA et al (1978) Incorporation of 6-thioguanosine and 4-thiouridine into RNA. Application to isolation of newly synthesised RNA by affinity chromatography. Eur J Biochem 92:373–379

    Article  CAS  PubMed  Google Scholar 

  13. Cleary MD (2008) Cell type-specific analysis of mRNA synthesis and decay in vivo with uracil phosphoribosyltransferase and 4-thiouracil. Methods Enzymol 448:379–406. doi:10.1016/S0076-6879(08)02619-0

    Article  CAS  PubMed  Google Scholar 

  14. Zeiner GM, Cleary MD, Fouts AE et al (2008) RNA analysis by biosynthetic tagging using 4-thiouracil and uracil phosphoribosyltransferase. Methods Mol Biol 419:135–146. doi:10.1007/978-1-59745-033-1_9

    Article  CAS  PubMed  Google Scholar 

  15. Miller C, Schwalb B, Maier K et al (2011) Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Mol Syst Biol 7:458. doi:10.1038/msb.2010.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rabani M, Levin JZ, Fan L et al (2011) Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat Biotechnol 29:436–442. doi:10.1038/nbt.1861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Windhager L, Bonfert T, Burger K et al (2012) Ultrashort and progressive 4sU-tagging reveals key characteristics of RNA processing at nucleotide resolution. Genome Res 22:2031–2042. doi:10.1101/gr.131847.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rädle B, Rutkowski AJ, Ruzsics Z et al (2013) Metabolic labeling of newly transcribed RNA for high resolution gene expression profiling of RNA synthesis, processing and decay in cell culture. J Vis Exp. doi:10.3791/50195

    PubMed  PubMed Central  Google Scholar 

  19. Rabani M, Raychowdhury R, Jovanovic M et al (2014) High-resolution sequencing and modeling identifies distinct dynamic RNA regulatory strategies. Cell 159:1698–1710. doi:10.1016/j.cell.2014.11.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Barrass JD, Reid JEA, Huang Y et al (2015) Transcriptome-wide RNA processing kinetics revealed using extremely short 4tU labeling. Genome Biol 16:282. doi:10.1186/s13059-015-0848-1

    Article  PubMed  PubMed Central  Google Scholar 

  21. Green NM (1990) Avidin and streptavidin. Methods Enzymol 184:51–67

    Article  CAS  PubMed  Google Scholar 

  22. Rio DC (2015) Northern blots: capillary transfer of RNA from agarose gels and filter hybridization using standard stringency conditions. Cold Spring Harb Protoc 2015:306–313. doi:10.1101/pdb.prot081018

    PubMed  Google Scholar 

  23. Duffy EE, Rutenberg-Schoenberg M, Stark CD et al (2015) Tracking distinct RNA populations using efficient and reversible covalent chemistry. Mol Cell 59:858–866. doi:10.1016/j.molcel.2015.07.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Patricia Heyn or Karla M. Neugebauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Heyn, P., Neugebauer, K.M. (2017). Purification of Zygotically Transcribed RNA through Metabolic Labeling of Early Zebrafish Embryos. In: Lee, K. (eds) Zygotic Genome Activation. Methods in Molecular Biology, vol 1605. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6988-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6988-3_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6986-9

  • Online ISBN: 978-1-4939-6988-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics