Skip to main content

CRISPR/Cas9-Mediated Gene Targeting during Embryogenesis in Swine

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1605))

Abstract

Ability to disrupt genes is essential in elucidating gene function. Unlike rodents or amphibians, it has been difficult to generate gene-targeted embryos in large animals. Therefore, studies of early embryo development have been hampered in large animals. A recent technology suggests that targeted mutations can be successfully introduced during embryogenesis, thus by-passing the need of breeding to produce gene-targeted embryos. This is particularly important in large animal models because of longer gestation period and higher animal cost. Here, we describe a specific approach to disrupt up to two genes simultaneously during embryogenesis using the CRISPR/Cas9 technology in swine. The approach can help understand the mechanism of zygotic genome activation in large animals.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Capecchi MR (2005) Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet 6(6):507–512. doi:10.1038/nrg1619

    Article  CAS  PubMed  Google Scholar 

  2. Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51(3):503–512

    Article  CAS  PubMed  Google Scholar 

  3. Wilke M, Buijs-Offerman RM, Aarbiou J, Colledge WH, Sheppard DN, Touqui L, Bot A, Jorna H, de Jonge HR, Scholte BJ (2011) Mouse models of cystic fibrosis: phenotypic analysis and research applications. J Cyst Fibros 10(Suppl 2):S152–S171. doi:10.1016/s1569-1993(11)60020-9

    Article  CAS  PubMed  Google Scholar 

  4. Braude P, Bolton V, Moore S (1988) Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature 332(6163):459–461. doi:10.1038/332459a0

    Article  CAS  PubMed  Google Scholar 

  5. Prather RS (1993) Nuclear control of early embryonic development in domestic pigs. J Reprod Fertil Suppl 48:17–29

    CAS  PubMed  Google Scholar 

  6. Santos F, Hyslop L, Stojkovic P, Leary C, Murdoch A, Reik W, Stojkovic M, Herbert M, Dean W (2010) Evaluation of epigenetic marks in human embryos derived from IVF and ICSI. Hum Reprod 25(9):2387–2395. doi:10.1093/humrep/deq151

    Article  CAS  PubMed  Google Scholar 

  7. Deshmukh RS, Ostrup O, Ostrup E, Vejlsted M, Niemann H, Lucas-Hahn A, Petersen B, Li J, Callesen H, Hyttel P (2011) DNA methylation in porcine preimplantation embryos developed in vivo and produced by in vitro fertilization, parthenogenetic activation and somatic cell nuclear transfer. Epigenetics 6(2):177–187

    Article  CAS  PubMed  Google Scholar 

  8. Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL, Im GS, Samuel M, Bonk A, Rieke A, Day BN, Murphy CN, Carter DB, Hawley RJ, Prather RS (2002) Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science (New York, NY) 295(5557):1089–1092. doi:10.1126/science.1068228

    Article  CAS  Google Scholar 

  9. Dai Y, Vaught TD, Boone J, Chen SH, Phelps CJ, Ball S, Monahan JA, Jobst PM, McCreath KJ, Lamborn AE, Cowell-Lucero JL, Wells KD, Colman A, Polejaeva IA, Ayares DL (2002) Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol 20(3):251–255. doi:10.1038/nbt0302-251

    Article  CAS  PubMed  Google Scholar 

  10. Whitworth KM, Lee K, Benne JA, Beaton BP, Spate LD, Murphy SL, Samuel MS, Mao J, O'Gorman C, Walters EM, Murphy CN, Driver JP, Mileham A, McLaren D, Wells KD, Prather RS (2014) Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol Reprod 91:78. doi:10.1095/biolreprod.114.121723

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lei S, Ryu J, Wen K, Twitchell E, Bui T, Ramesh A, Weiss M, Li G, Samuel H, Clark-Deener S, Jiang X, Lee K, Yuan L (2016) Increased and prolonged human norovirus infection in RAG2/IL2RG deficient gnotobiotic pigs with severe combined immunodeficiency. Sci Rep 6:25222. doi:10.1038/srep25222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yoshioka K, Suzuki C, Tanaka A, Anas IM, Iwamura S (2002) Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol Reprod 66(1):112–119

    Article  CAS  PubMed  Google Scholar 

  13. Abeydeera LR, Wang WH, Cantley TC, Rieke A, Prather RS, Day BN (1998) Presence of epidermal growth factor during in vitro maturation of pig oocytes and embryo culture can modulate blastocyst development after in vitro fertilization. Mol Reprod Dev 51(4):395–401. doi:10.1002/(sici)1098-2795(199812)51:4<395::aid-mrd6>3.0.co;2-y

    Article  CAS  PubMed  Google Scholar 

  14. Lee K, Redel BK, Spate L, Teson J, Brown AN, Park KW, Walters E, Samuel M, Murphy CN, Prather RS (2013) Piglets produced from cloned blastocysts cultured in vitro with GM-CSF. Mol Reprod Dev 80(2):145–154. doi:10.1002/mrd.22143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4):910–918. doi:10.1016/j.cell.2013.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308. doi:10.1038/nprot.2013.143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by NIH grant R21OD019934.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiho Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ryu, J., Lee, K. (2017). CRISPR/Cas9-Mediated Gene Targeting during Embryogenesis in Swine. In: Lee, K. (eds) Zygotic Genome Activation. Methods in Molecular Biology, vol 1605. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6988-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6988-3_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6986-9

  • Online ISBN: 978-1-4939-6988-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics