Skip to main content

Use of Chemicals to Inhibit DNA Replication, Transcription, and Protein Synthesis to Study Zygotic Genome Activation

  • Protocol
  • First Online:
Zygotic Genome Activation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1605))

Abstract

Maternal-to-zygotic transition is an event that developmental control of early embryos is switched from oocyte-derived factors to the zygotic genome. Ability to inhibit DNA replication, transcription, and translation is an important tool in studying events, such as zygotic genome activation, during embyogenesis. Here, we describe approaches to block DNA replication, transcription, and translation using chemical inhibitors. Then we also demonstrate how the transcript level of a maternally inherited gene, ten-eleven translocation methylcytosine dioxygenase 3, responses to the chemical treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li L, Lu X, Dean J (2013) The maternal to zygotic transition in mammals. Mol Asp Med 34(5):919–938. doi:10.1016/j.mam.2013.01.003

    Article  Google Scholar 

  2. Bachvarova R, Cohen EM, De Leon V, Tokunaga K, Sakiyama S, Paynton BV (1989) Amounts and modulation of actin mRNAs in mouse oocytes and embryos. Development 106(3):561–565

    CAS  PubMed  Google Scholar 

  3. Bouniol C, Nguyen E, Debey P (1995) Endogenous transcription occurs at the 1-cell stage in the mouse embryo. Exp Cell Res 218(1):57–62

    Article  CAS  PubMed  Google Scholar 

  4. Braude P, Bolton V, Moore S (1988) Human gene expression first occurs between the four-and eight-cell stages of preimplantation development. Nature 332(6163):459–461

    Article  CAS  PubMed  Google Scholar 

  5. Davis D (1984) Culture and storage of pig embryos. J Reprod Fertil Suppl 33:115–124

    Google Scholar 

  6. Frei R, Schultz G, Church R (1989) Qualitative and quantitative changes in protein synthesis occur at the 8–16-cell stage of embryogenesis in the cow. J Reprod Fertil 86(2):637–641

    Article  CAS  PubMed  Google Scholar 

  7. Crosby I, Gandolfi F, Moor R (1988) Control of protein synthesis during early cleavage of sheep embryos. J Reprod Fertil 82(2):769–775

    Article  CAS  PubMed  Google Scholar 

  8. Wang QT, Piotrowska K, Ciemerych MA, Milenkovic L, Scott MP, Davis RW, Zernicka-Goetz M (2004) A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev Cell 6(1):133–144

    Article  CAS  PubMed  Google Scholar 

  9. Golbus MS, Calarco PG, Epstein CJ (1973) The effects of inhibitors of RNA synthesis (α-amanitin and actinomycin D) on preimplantation mouse embryogenesis. J Exp Zool 186(2):207–216

    Article  CAS  PubMed  Google Scholar 

  10. Warner CM, Versteegh LR (1974) In vivo and in vitro effect of α-amanitin on preimplantation mouse embryo RNA polymerase. Nature 248(5450):678–680

    Article  CAS  PubMed  Google Scholar 

  11. Jarrell V, Day B, Prather R (1991) The transition from maternal to zygotic control of development occurs during the 4-cell stage in the domestic pig, Sus scrofa: quantitative and qualitative aspects of protein synthesis. Biol Reprod 44(1):62–68

    Article  CAS  PubMed  Google Scholar 

  12. Iqbal K, Jin S-G, Pfeifer GP, Szabó PE (2011) Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci 108(9):3642–3647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee K, Hamm J, Whitworth K, Spate L, K-w P, Murphy CN, Prather RS (2014) Dynamics of TET family expression in porcine preimplantation embryos is related to zygotic genome activation and required for the maintenance of NANOG. Dev Biol 386(1):86–95

    Article  CAS  PubMed  Google Scholar 

  14. Yoshioka K, Suzuki C, Tanaka A, Anas IM-K, Iwamura S (2002) Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol Reprod 66(1):112–119

    Article  CAS  PubMed  Google Scholar 

  15. Mukherjee AB (1972) Normal progeny from fertilization in vitro of mouse oocytes matured in culture and spermatozoa capacitated in vitro. Nature 237:397–398

    Article  CAS  PubMed  Google Scholar 

  16. Mattioli M, Bacci M, Galeati G, Seren E (1989) Developmental competence of pig oocytes matured and fertilized in vitro. Theriogenology 31(6):1201–1207

    Article  CAS  PubMed  Google Scholar 

  17. Kline D, Kline JT (1992) Repetitive calcium transients and the role of calcium in exocytosis and cell cycle activation in the mouse egg. Dev Biol 149(1):80–89

    Article  CAS  PubMed  Google Scholar 

  18. Wang W-H, Sun Q-Y, Hosoe M, Shioya Y, Day BN (1997) Quantified analysis of cortical granule distribution and exocytosis of porcine oocytes during meiotic maturation and activation. Biol Reprod 56(6):1376–1382

    Article  CAS  PubMed  Google Scholar 

  19. Abeydeera LR, Wang WH, Cantley TC, Rieke A, Prather RS, Day BN (1998) Presence of epidermal growth factor during in vitro maturation of pig oocytes and embryo culture can modulate blastocyst development after in vitro fertilization. Mol Reprod Dev 51(4):395–401

    Article  CAS  PubMed  Google Scholar 

  20. Kidson A, Colenbrander B, Verheijden J, Bevers M (2001) Polyspermia in the pig is dependent on both IVF medium and sperm dose during fertilization in vitro. In: Proceedings of the sixth international conference on pig reproduction, p 75

    Google Scholar 

  21. Martinez-Madrid B, Dominguez E, Alonso C, Diaz C, Garcia P, Sanchez R (2001) Effect of IVF medium and sperm concentration on fertilization parameters. In: Proceedings of the sixth international conference on pig reproduction, p 75

    Google Scholar 

  22. Petters R, Wells K (1992) Culture of pig embryos. J Reprod Fertil Suppl 48:61–73

    Google Scholar 

  23. Hamatani T, Carter MG, Sharov AA, Ko MS (2004) Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell 6(1):117–131

    Article  CAS  PubMed  Google Scholar 

  24. Wang Q, Latham KE (1997) Requirement for protein synthesis during embryonic genome activation in mice. Mol Reprod Dev 47(3):265–270

    Article  CAS  PubMed  Google Scholar 

  25. Baranovskiy AG, Babayeva ND, Suwa Y, Gu J, Pavlov YI, Tahirov TH (2014) Structural basis for inhibition of DNA replication by aphidicolin. Nucleic Acids Res 42(22):14013–14021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lo Y-S, Tseng W-H, Chuang C-Y, Hou M-H (2013) The structural basis of actinomycin D-binding induces nucleotide flipping out, a sharp bend and a left-handed twist in CGG triplet repeats. Nucleic Acids Res 41(7):4284–4294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sobell HM (1985) Actinomycin and DNA transcription. Proc Natl Acad Sci 82(16):5328–5331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brueckner F, Cramer P (2008) Structural basis of transcription inhibition by α-amanitin and implications for RNA polymerase II translocation. Nat Struct Mol Biol 15(8):811–818

    Article  CAS  PubMed  Google Scholar 

  29. Warfel AH, ELBERG S (1970) Specific inhibition of nuclear RNA polymerase II by a-amanitin. Science 170:447–449

    Article  Google Scholar 

  30. Baumli S, Endicott JA, Johnson LN (2010) Halogen bonds form the basis for selective P-TEFb inhibition by DRB. Chem Biol 17(9):931–936

    Article  CAS  PubMed  Google Scholar 

  31. Chao S-H, Price DH (2001) Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J Biol Chem 276(34):31793–31799

    Article  CAS  PubMed  Google Scholar 

  32. Titov DV, Gilman B, He Q-L, Bhat S, Low W-K, Dang Y, Smeaton M, Demain AL, Miller PS, Kugel JF (2011) XPB, a subunit of TFIIH, is a target of the natural product triptolide. Nat Chem Biol 7(3):182–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schneider-Poetsch T, Ju J, Eyler DE, Dang Y, Bhat S, Merrick WC, Green R, Shen B, Liu JO (2010) Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin. Nat Chem Biol 6(3):209–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mayer W, Niveleau A, Walter J, Fundele R, Haaf T (2000) Embryogenesis: demethylation of the zygotic paternal genome. Nature 403(6769):501–502

    Article  CAS  PubMed  Google Scholar 

  35. Santos F, Hendrich B, Reik W, Dean W (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241(1):172–182

    Article  CAS  PubMed  Google Scholar 

  36. Gu T-P, Guo F, Yang H, Wu H-P, Xu G-F, Liu W, Xie Z-G, Shi L, He X, S-g J (2011) The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477(7366):606–610

    Article  CAS  PubMed  Google Scholar 

  37. Wossidlo M, Nakamura T, Lepikhov K, Marques CJ, Zakhartchenko V, Boiani M, Arand J, Nakano T, Reik W, Walter J (2011) 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun 2:241

    Article  PubMed  Google Scholar 

  38. Kishida R, Lee E, Fukui Y (2004) In vitro maturation of porcine oocytes using a defined medium and developmental capacity after intracytoplasmic sperm injection. Theriogenology 62(9):1663–1676

    Article  CAS  PubMed  Google Scholar 

  39. Isom SC, Whitworth KM, Prather RS (2012) Timing of first embryonic cleavage is a positive indicator of the in vitro developmental potential of porcine embryos derived from in vitro fertilization, somatic cell nuclear transfer and parthenogenesis. Mol Reprod Dev 79(3):197–207

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiho Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Uh, K., Lee, K. (2017). Use of Chemicals to Inhibit DNA Replication, Transcription, and Protein Synthesis to Study Zygotic Genome Activation. In: Lee, K. (eds) Zygotic Genome Activation. Methods in Molecular Biology, vol 1605. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6988-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6988-3_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6986-9

  • Online ISBN: 978-1-4939-6988-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics