Skip to main content

Retrovirus-Based Surrogate Systems for BSL-2 High-Throughput Screening of Antivirals Targeting BSL-3/4 Hemorrhagic Fever-Causing Viruses

  • Protocol
  • First Online:
Hemorrhagic Fever Viruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1604))

Abstract

The majority of viruses causing hemorrhagic fever in humans are Risk Group 3 or 4 pathogens and, therefore, can only be handled in biosafety level 3 or 4 (BSL-3/4) containment laboratories. The restricted number of such laboratories, the substantial financial requirements to maintain them, and safety concerns for the laboratory workers pose formidable challenges for rapid medical countermeasure discovery and evaluation. BSL-2 surrogate systems are a less challenging, cheap, and fast alternative to the use of live high-consequence viruses for dissecting and targeting individual steps of viral lifecycles with a diminished threat to the laboratory worker. Typical surrogate systems are virion-like particles (VLPs), transcriptionally active (“infectious”) VLPs, minigenome systems, recombinant heterotypic viruses encoding proteins of target viruses, and vesiculoviral or retroviral pseudotype systems. Here, we outline the use of retroviral pseudotypes for identification of antivirals against BSL-4 pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuhn JH, Clawson AN, Radoshitzky SR, Wahl-Jensen V, Bavari S, Jahrling PB (2013) Viral hemorrhagic fevers: history and definitions. Viral hemorrhagic fevers. Taylor & Francis/CRC Press, Boca Raton, Florida, USA

    Book  Google Scholar 

  2. Suomalainen M, Garoff H (1994) Incorporation of homologous and heterologous proteins into the envelope of Moloney murine leukemia virus. J Virol 68(8):4879–4889

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Capul AA, de la Torre JC (2008) A cell-based luciferase assay amenable to high-throughput screening of inhibitors of arenavirus budding. Virology 382(1):107–114. doi:10.1016/j.virol.2008.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bouloy M, Flick R (2009) Reverse genetics technology for Rift Valley fever virus: current and future applications for the development of therapeutics and vaccines. Antivir Res 84(2):101–118. doi:10.1016/j.antiviral.2009.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Devignot S, Bergeron E, Nichol S, Mirazimi A, Weber F (2015) A virus-like particle system identifies the endonuclease domain of Crimean-Congo hemorrhagic fever virus. J Virol 89(11):5957–5967. doi:10.1128/JVI.03691-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hoenen T, Feldmann H (2014) Reverse genetics systems as tools for the development of novel therapies against filoviruses. Expert Rev Anti-Infect Ther 12(10):1253–1263. doi:10.1586/14787210.2014.948848

    Article  CAS  Google Scholar 

  7. Ikegami T, Peters CJ, Makino S (2005) Rift Valley fever virus nonstructural protein NSs promotes viral RNA replication and transcription in a minigenome system. J Virol 79(9):5606–5615. doi:10.1128/JVI.79.9.5606-5615.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Masse N, Davidson A, Ferron F, Alvarez K, Jacobs M, Romette JL, Canard B, Guillemot JC (2010) Dengue virus replicons: production of an interserotypic chimera and cell lines from different species, and establishment of a cell-based fluorescent assay to screen inhibitors, validated by the evaluation of ribavirin's activity. Antivir Res 86(3):296–305. doi:10.1016/j.antiviral.2010.03.010

    Article  CAS  PubMed  Google Scholar 

  9. Mühlberger E, Lötfering B, Klenk HD, Becker S (1998) Three of the four nucleocapsid proteins of Marburg virus, NP, VP35, and L, are sufficient to mediate replication and transcription of Marburg virus-specific monocistronic minigenomes. J Virol 72(11):8756–8764

    PubMed  PubMed Central  Google Scholar 

  10. Mühlberger E, Weik M, Volchkov VE, Klenk HD, Becker S (1999) Comparison of the transcription and replication strategies of Marburg virus and Ebola virus by using artificial replication systems. J Virol 73(3):2333–2342

    PubMed  PubMed Central  Google Scholar 

  11. Ng CY, Gu F, Phong WY, Chen YL, Lim SP, Davidson A, Vasudevan SG (2007) Construction and characterization of a stable subgenomic dengue virus type 2 replicon system for antiviral compound and siRNA testing. Antivir Res 76(3):222–231. doi:10.1016/j.antiviral.2007.06.007

    Article  CAS  PubMed  Google Scholar 

  12. Weber F, Dunn EF, Bridgen A, Elliott RM (2001) The Bunyamwera virus nonstructural protein NSs inhibits viral RNA synthesis in a minireplicon system. Virology 281(1):67–74. doi:10.1006/viro.2000.0774

    Article  CAS  PubMed  Google Scholar 

  13. Yang CC, Tsai MH, Hu HS, Pu SY, Wu RH, Wu SH, Lin HM, Song JS, Chao YS, Yueh A (2013) Characterization of an efficient dengue virus replicon for development of assays of discovery of small molecules against dengue virus. Antivir Res 98(2):228–241. doi:10.1016/j.antiviral.2013.03.001

    Article  CAS  PubMed  Google Scholar 

  14. Kranzusch PJ, Schenk AD, Rahmeh AA, Radoshitzky SR, Bavari S, Walz T, Whelan SP (2010) Assembly of a functional Machupo virus polymerase complex. Proc Natl Acad Sci U S A 107(46):20069–20074. doi:10.1073/pnas.1007152107. 1007152107 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hass M, Gölnitz U, Müller S, Becker-Ziaja B, Günther S (2004) Replicon system for Lassa virus. J Virol 78(24):13793–13803. doi:10.1128/JVI.78.24.13793-13803.2004. 78/24/13793 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Albariño CG, Bird BH, Chakrabarti AK, Dodd KA, White DM, Bergeron E, Shrivastava-Ranjan P, Nichol ST (2011) Reverse genetics generation of chimeric infectious Junin/Lassa virus is dependent on interaction of homologous glycoprotein stable signal peptide and G2 cytoplasmic domains. J Virol 85(1):112–122. doi:10.1128/jvi.01837-10

    Article  PubMed  Google Scholar 

  17. Radoshitzky SR, Abraham J, Spiropoulou CF, Kuhn JH, Nguyen D, Li W, Nagel J, Schmidt PJ, Nunberg JH, Andrews NC, Farzan M, Choe H (2007) Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature 446(7131):92–96. doi:10.1038/nature05539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Radoshitzky SR, Kuhn JH, Spiropoulou CF, Albariño CG, Nguyen DP, Salazar-Bravo J, Dorfman T, Lee AS, Wang E, Ross SR, Choe H, Farzan M (2008) Receptor determinants of zoonotic transmission of New World hemorrhagic fever arenaviruses. Proc Natl Acad Sci U S A 105(7):2664–2669. doi:10.1073/pnas.0709254105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reignier T, Oldenburg J, Noble B, Lamb E, Romanowski V, Buchmeier MJ, Cannon PM (2006) Receptor use by pathogenic arenaviruses. Virology 353(1):111–120. doi:10.1016/j.virol.2006.05.018

    Article  CAS  PubMed  Google Scholar 

  20. Rojek JM, Spiropoulou CF, Kunz S (2006) Characterization of the cellular receptors for the South American hemorrhagic fever viruses Junin, Guanarito, and Machupo. Virology 349(2):476–491. doi:10.1016/j.virol.2006.02.033

    Article  CAS  PubMed  Google Scholar 

  21. Hu HP, Hsieh SC, King CC, Wang WK (2007) Characterization of retrovirus-based reporter viruses pseudotyped with the precursor membrane and envelope glycoproteins of four serotypes of dengue viruses. Virology 368(2):376–387. doi:10.1016/j.virol.2007.06.026

    Article  CAS  PubMed  Google Scholar 

  22. Ma M, Kersten DB, Kamrud KI, Wool-Lewis RJ, Schmaljohn C, Gonzalez-Scarano F (1999) Murine leukemia virus pseudotypes of La Crosse and Hantaan bunyaviruses: a system for analysis of cell tropism. Virus Res 64(1):23–32

    Article  CAS  PubMed  Google Scholar 

  23. Ogino M, Ebihara H, Lee BH, Araki K, Lundkvist Å, Kawaoka Y, Yoshimatsu K, Arikawa J (2003) Use of vesicular stomatitis virus pseudotypes bearing Hantaan or Seoul virus envelope proteins in a rapid and safe neutralization test. Clin Diagn Lab Immunol 10(1):154–160

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Shtanko O, Nikitina RA, Altuntas CZ, Chepurnov AA, Davey RA (2014) Crimean-Congo hemorrhagic fever virus entry into host cells occurs through the multivesicular body and requires ESCRT regulators. PLoS Pathog 10(9):e1004390. doi:10.1371/journal.ppat.1004390

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sinn PL, Hickey MA, Staber PD, Dylla DE, Jeffers SA, Davidson BL, Sanders DA, McCray PB Jr (2003) Lentivirus vectors pseudotyped with filoviral envelope glycoproteins transduce airway epithelia from the apical surface independently of folate receptor alpha. J Virol 77(10):5902–5910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Takada A, Robison C, Goto H, Sanchez A, Murti KG, Whitt MA, Kawaoka Y (1997) A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci U S A 94(26):14764–14769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wool-Lewis RJ, Bates P (1998) Characterization of Ebola virus entry by using pseudotyped viruses: identification of receptor-deficient cell lines. J Virol 72(4):3155–3160

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4(2):67–73

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheli R. Radoshitzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Radoshitzky, S.R., Soloveva, V., Gharaibeh, D., Kuhn, J.H., Bavari, S. (2018). Retrovirus-Based Surrogate Systems for BSL-2 High-Throughput Screening of Antivirals Targeting BSL-3/4 Hemorrhagic Fever-Causing Viruses. In: Salvato, M. (eds) Hemorrhagic Fever Viruses. Methods in Molecular Biology, vol 1604. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6981-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6981-4_29

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6980-7

  • Online ISBN: 978-1-4939-6981-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics