BAC-Based Recovery of Recombinant Respiratory Syncytial Virus (RSV)

  • Christopher C. Stobart
  • Anne L. Hotard
  • Jia Meng
  • Martin L. MooreEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1602)


Respiratory syncytial virus (RSV) is an enveloped, nonsegmented negative-strand RNA virus, which causes lower respiratory tract infections and is a leading cause of mortality in young infants. There is no available RSV vaccine and currently administered prophylactic antibodies are limited to high-risk populations. Current efforts to develop vaccines include development of live-attenuated RSV candidates. We describe here methods for preparation and recovery of recombinant RSV using an efficient bacterial artificial chromosome (BAC)-based system, expansion and plaque purification of recovered virus, and generation of master and working stocks.

Key words

Respiratory syncytial virus RSV Reverse genetics Bacterial artificial chromosome BAC Virus recovery 



This work was supported by NIH grants R01AI087798 (M.L.M.), U19 AI095227 (M.L.M.), and T32 AI074492 (C.C.S.) and the Emory Children’s Center for Childhood Infections and Vaccines (CCIV).


  1. 1.
    Meng J, Stobart CC, Hotard AL, Moore ML (2014) An overview of respiratory syncytial virus. PLoS Pathog 10(4):e1004016. doi: 10.1371/journal.ppat.1004016 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Collins PL, Melero JA (2011) Progress in understanding and controlling respiratory syncytial virus: still crazy after all these years. Virus Res 162(1–2):80–99. doi: 10.1016/j.virusres.2011.09.020 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Blount RE Jr, Morris JA, Savage RE (1956) Recovery of cytopathogenic agent from chimpanzees with coryza. Proc Soc Exp Biol Med 92(3):544–549CrossRefPubMedGoogle Scholar
  4. 4.
    Nair H, Nokes DJ, Gessner BD, Dherani M, Madhi SA, Singleton RJ, O’Brien KL, Roca A, Wright PF, Bruce N, Chandran A, Theodoratou E, Sutanto A, Sedyaningsih ER, Ngama M, Munywoki PK, Kartasasmita C, Simoes EA, Rudan I, Weber MW, Campbell H (2010) Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet 375(9725):1545–1555. doi: 10.1016/S0140-6736(10)60206-1 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Collins PL, Hill MG, Camargo E, Grosfeld H, Chanock RM, Murphy BR (1995) Production of infectious human respiratory syncytial virus from cloned cDNA confirms an essential role for the transcription elongation factor from the 5′ proximal open reading frame of the M2 mRNA in gene expression and provides a capability for vaccine development. Proc Natl Acad Sci U S A 92(25):11563–11567CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Biacchesi S, Murphy BR, Collins PL, Buchholz UJ (2007) Frequent frameshift and point mutations in the SH gene of human metapneumovirus passaged in vitro. J Virol 81(11):6057–6067. doi: 10.1128/JVI.00128-07 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Stobart CC, Moore ML (2014) RNA virus reverse genetics and vaccine design. Viruses 6(7):2531–2550. doi: 10.3390/v6072531 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Moore ML, Chi MH, Luongo C, Lukacs NW, Polosukhin VV, Huckabee MM, Newcomb DC, Buchholz UJ, Crowe JE Jr, Goleniewska K, Williams JV, Collins PL, Peebles RS Jr (2009) A chimeric A2 strain of respiratory syncytial virus (RSV) with the fusion protein of RSV strain line 19 exhibits enhanced viral load, mucus, and airway dysfunction. J Virol 83(9):4185–4194. doi: 10.1128/JVI.01853-08 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hotard AL, Shaikh FY, Lee S, Yan D, Teng MN, Plemper RK, Crowe JE Jr, Moore ML (2012) A stabilized respiratory syncytial virus reverse genetics system amenable to recombination-mediated mutagenesis. Virology 434(1):129–136. doi: 10.1016/j.virol.2012.09.022 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T, Tachiiri Y, Simon M (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia-coli using an F-factor-based vector. Proc Natl Acad Sci U S A 89(18):8794–8797. doi: 10.1073/Pnas.89.18.8794 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG (2005) Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res 33(4):e36. doi: 10.1093/nar/gni035 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Buchholz UJ, Finke S, Conzelmann KK (1999) Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol 73(1):251–259PubMedPubMedCentralGoogle Scholar
  13. 13.
    Shcherbo D, Murphy CS, Ermakova GV, Solovieva EA, Chepurnykh TV, Shcheglov AS, Verkhusha VV, Pletnev VZ, Hazelwood KL, Roche PM, Lukyanov S, Zaraisky AG, Davidson MW, Chudakov DM (2009) Far-red fluorescent tags for protein imaging in living tissues. Biochem J 418(3):567–574. doi: 10.1042/BJ20081949 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hotard AL, Lee S, Currier MG, Crowe JE Jr, Sakamoto K, Newcomb DC, Peebles RS Jr, Plemper RK, Moore ML (2015) Identification of residues in the human respiratory syncytial virus fusion protein that modulate fusion activity and pathogenesis. J Virol 89(1):512–522. doi: 10.1128/JVI.02472-14 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Christopher C. Stobart
    • 1
    • 2
  • Anne L. Hotard
    • 1
    • 2
  • Jia Meng
    • 1
    • 2
  • Martin L. Moore
    • 1
    • 2
    Email author
  1. 1.Department of PediatricsEmory University School of MedicineAtlantaUSA
  2. 2.Children’s Healthcare of AtlantaAtlantaUSA

Personalised recommendations