Reverse Genetics System for the Avian Coronavirus Infectious Bronchitis Virus

  • Erica BickertonEmail author
  • Sarah M. Keep
  • Paul Britton
Part of the Methods in Molecular Biology book series (MIMB, volume 1602)


We have developed a reverse genetics system for the avian coronavirus infectious bronchitis virus (IBV) in which a full-length cDNA corresponding to the IBV genome is inserted into the vaccinia virus genome under the control of a T7 promoter sequence. Vaccinia virus as a vector for the full-length IBV cDNA has the advantage that modifications can be introduced into the IBV cDNA using homologous recombination, a method frequently used to insert and delete sequences from the vaccinia virus genome. Here, we describe the use of transient dominant selection as a method for introducing modifications into the IBV cDNA that has been successfully used for the substitution of specific nucleotides, deletion of genomic regions, and exchange of complete genes. Infectious recombinant IBVs are generated in situ following the transfection of vaccinia virus DNA, containing the modified IBV cDNA, into cells infected with a recombinant fowlpox virus expressing T7 DNA-dependant RNA polymerase.

Key words

Transient dominant selection (TDS) Vaccinia virus Infectious bronchitis virus (IBV) Coronavirus Avian Reverse genetics Nidovirus Fowlpox virus T7 RNA polymerase 


  1. 1.
    Carstens EB (2009) Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses. Arch Virol 155:133–146CrossRefPubMedGoogle Scholar
  2. 2.
    Tyrrell DAJ, Almeida JD, Berry DM et al (1968) Coronaviruses. Nature 220:650CrossRefGoogle Scholar
  3. 3.
    Britton P, Cavanagh D (2007) Avian coronavirus diseases and infectious bronchitis vaccine development. In: Thiel V (ed) Coronaviruses: molecular and cellular biology. Caister Academic Press, Norfolk, UKGoogle Scholar
  4. 4.
    Ambali AG, Jones RC (1990) Early pathogenesis in chicks of infection with an enterotropic strain of infectious bronchitis virus. Avian Dis 34:809–817CrossRefPubMedGoogle Scholar
  5. 5.
    Cavanagh D (2005) Coronaviruses in poultry and other birds. Avian Pathol 34:439–448CrossRefPubMedGoogle Scholar
  6. 6.
    Cavanagh D, Gelb J Jr (2008) Infectious bronchitis. In: Saif YM (ed) Diseases of poultry, 12th edn. Blackwell Publishing, IowaGoogle Scholar
  7. 7.
    Jones RC (2010) Viral respiratory diseases (ILT, aMPV infections, IB): are they ever under control? Br Poult Sci 51:1–11CrossRefPubMedGoogle Scholar
  8. 8.
    Cook JKA, Mockett APA (1995) Epidemiology of infectious bronchitis virus. In: Siddell SG (ed) The coronaviridae. Plenum Press, New York and LondonGoogle Scholar
  9. 9.
    Schalk AF, Hawn MC (1931) An apparently new respiratory disease of baby chicks. J Am Vet Ass 78:413–422Google Scholar
  10. 10.
    Beach JR, Schalm OW (1936) A filtrable virus distinct from that of laryngotracheitis: the cause of respiratory disease of chicks. Poult Sci 15:199–206CrossRefGoogle Scholar
  11. 11.
    Beaudette FR, Hudson CB (1937) Cultivation of the virus of infectious bronchitis. J Am Vet Med Assoc 90:51–60Google Scholar
  12. 12.
  13. 13.
    Bennett R (2003) The direct costs of livestock disease: the development of a system of models for the analysis of 30 endemic livestock diseases in Great Britain. J Agric Econ 54:55–71CrossRefGoogle Scholar
  14. 14.
    Bennett R, Jpelaar JI (2005) Updated estimates of the costs associated with thirty four endemic livestock diseases in Great Britain. J Agric Econ 56:135–144CrossRefGoogle Scholar
  15. 15.
    Casais R, Thiel V, Siddell SG et al (2001) Reverse genetics system for the avian coronavirus infectious bronchitis virus. J Virol 75:12359–12369CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Thiel V, Siddell SG (2005) Reverse genetics of coronaviruses using vaccinia virus vectors. Curr Top Microbiol Immunol 287:199–227PubMedGoogle Scholar
  17. 17.
    Falkner FG, Moss B (1990) Transient dominant selection of recombinant vaccinia viruses. J Virol 64:3108–3111PubMedPubMedCentralGoogle Scholar
  18. 18.
    Britton P, Evans S, Dove B et al (2005) Generation of a recombinant avian coronavirus infectious bronchitis virus using transient dominant selection. J Virol Method 123:203–211CrossRefGoogle Scholar
  19. 19.
    Boulanger D, Green P, Smith T et al (1998) The 131-amino-acid repeat region of the essential 39-kilodalton core protein of fowlpox virus FP9, equivalent to vaccinia virus A4L protein, is nonessential and highly immunogenic. J Virol 72:170–179PubMedPubMedCentralGoogle Scholar
  20. 20.
    Mulligan R, Berg P (1981) Selection for animal cells that express the E.coli gene coding for xanthine-guanine phosphoribosyl transferase. Proc Natl Acad Sci U S A 78:2072–2076CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Britton P, Green P, Kottier S et al (1996) Expression of bacteriophage T7 RNA polymerase in avian and mammalian cells by a recombinant fowlpox virus. J Gen Virol 77:963–967CrossRefPubMedGoogle Scholar
  22. 22.
    Hiscox JA, Wurm T, Wilson L et al (2001) The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus. J Virol 75:506–512CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ausubel FM, Brent R, Kingston RE et al (1987) Current protocols in molecular biology. John Wiley and Sons, Inc., New YorkGoogle Scholar
  24. 24.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual/second edition, 2nd edn. Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  25. 25.
    Mackett M, Smith GL, Moss B (1985) The construction and characterisation of vaccinia virus recombinants expressing foreign genes. In: Glover DM (ed) DNA cloning, a practical approach. IRL Press, Oxford, pp 191–211Google Scholar
  26. 26.
    Smith GL (1993) Expression of genes by vaccinia virus vectors. In: Davison MJ, Elliot RM (eds) Molecular virology, a practical approach. IRL Press, Oxford, pp 257–283Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.The Pirbright InstitutePirbrightUK

Personalised recommendations