Advertisement

Efficient Reverse Genetic Systems for Rapid Genetic Manipulation of Emergent and Preemergent Infectious Coronaviruses

  • Adam S. Cockrell
  • Anne Beall
  • Boyd Yount
  • Ralph BaricEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1602)

Abstract

Emergent and preemergent coronaviruses (CoVs) pose a global threat that requires immediate intervention. Rapid intervention necessitates the capacity to generate, grow, and genetically manipulate infectious CoVs in order to rapidly evaluate pathogenic mechanisms, host and tissue permissibility, and candidate antiviral therapeutic efficacy. CoVs encode the largest viral RNA genomes at about 28–32,000 nucleotides in length, and thereby complicate efficient engineering of the genome. Deconstructing the genome into manageable fragments affords the plasticity necessary to rapidly introduce targeted genetic changes in parallel and assort mutated fragments while maximizing genome stability over time. In this protocol we describe a well-developed reverse genetic platform strategy for CoVs that is comprised of partitioning the viral genome into 5–7 independent DNA fragments (depending on the CoV genome), each subcloned into a plasmid for increased stability and ease of genetic manipulation and amplification. Coronavirus genomes are conveniently partitioned by introducing type IIS or IIG restriction enzyme recognition sites that confer directional cloning. Since each restriction site leaves a unique overhang between adjoining fragments, reconstruction of the full-length genome can be achieved through a standard DNA ligation comprised of equal molar ratios of each fragment. Using this method, recombinant CoVs can be rapidly generated and used to investigate host range, gene function, pathogenesis, and candidate therapeutics for emerging and preemergent CoVs both in vitro and in vivo.

Key words

Coronavirus (CoV) Reverse genetics Severe acute respiratory syndrome coronavirus (SARS-CoV) Middle East respiratory syndrome coronavirus (MERS-CoV) Emerging Preemergent Bat coronavirus Porcine epidemic diarrhea virus (PEDV) 

References

  1. 1.
    McIntosh K (2005) Coronaviruses in the limelight. J Infect Dis 191(4):489–491. doi: 10.1086/428510 CrossRefPubMedGoogle Scholar
  2. 2.
    Peiris JS, Guan Y, Yuen KY (2004) Severe acute respiratory syndrome. Nat Med 10(12 Suppl):S88–S97. doi: 10.1038/nm1143 CrossRefPubMedGoogle Scholar
  3. 3.
    Graham RL, Donaldson EF, Baric RS (2013) A decade after SARS: strategies for controlling emerging coronaviruses. Nat Rev Microbiol 11(12):836–848. doi: 10.1038/nrmicro3143 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gralinski LE, Baric RS (2015) Molecular pathology of emerging coronavirus infections. J Pathol 235(2):185–195. doi: 10.1002/path.4454 CrossRefPubMedGoogle Scholar
  5. 5.
    Channappanavar R, Zhao J, Perlman S (2014) T cell-mediated immune response to respiratory coronaviruses. Immunol Res 59(1–3):118–128. doi: 10.1007/s12026-014-8534-z CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Totura AL, Baric RS (2012) SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon. Curr Opin Virol 2(3):264–275. doi: 10.1016/j.coviro.2012.04.004 CrossRefPubMedGoogle Scholar
  7. 7.
    Gralinski LE, Ferris MT, Aylor DL, Whitmore AC, Green R, Frieman MB, Deming D, Menachery VD, Miller DR, Buus RJ, Bell TA, Churchill GA, Threadgill DW, Katze MG, McMillan L, Valdar W, Heise MT, Pardo-Manuel de Villena F, Baric RS (2015) Genome wide identification of SARS-CoV susceptibility loci using the collaborative cross. PLoS Genet 11(10):e1005504. doi: 10.1371/journal.pgen.1005504 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fouchier RA, Hartwig NG, Bestebroer TM, Niemeyer B, de Jong JC, Simon JH, Osterhaus AD (2004) A previously undescribed coronavirus associated with respiratory disease in humans. Proc Natl Acad Sci U S A 101(16):6212–6216. doi: 10.1073/pnas.0400762101 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    van der Hoek L, Pyrc K, Jebbink MF, Vermeulen-Oost W, Berkhout RJ, Wolthers KC, Wertheim-van Dillen PM, Kaandorp J, Spaargaren J, Berkhout B (2004) Identification of a new human coronavirus. Nat Med 10(4):368–373. doi: 10.1038/nm1024 CrossRefPubMedGoogle Scholar
  10. 10.
    Woo PC, Lau SK, Chu CM, Chan KH, Tsoi HW, Huang Y, Wong BH, Poon RW, Cai JJ, Luk WK, Poon LL, Wong SS, Guan Y, Peiris JS, Yuen KY (2005) Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol 79(2):884–895. doi: 10.1128/JVI.79.2.884-895.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    van den Brand JM, Smits SL, Haagmans BL (2015) Pathogenesis of Middle East respiratory syndrome coronavirus. J Pathol 235(2):175–184. doi: 10.1002/path.4458 CrossRefPubMedGoogle Scholar
  12. 12.
    Lee SI (2015) Costly lessons from the 2015 Middle East respiratory syndrome coronavirus outbreak in Korea. J Prev Med Public Health 48(6):274–276. doi: 10.3961/jpmph.15.064 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    de Wit E, van Doremalen N, Falzarano D, Munster VJ (2016) SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol 14(8):523–534. doi: 10.1038/nrmicro.2016.81 CrossRefPubMedGoogle Scholar
  14. 14.
    Stevenson GW, Hoang H, Schwartz KJ, Burrough ER, Sun D, Madson D, Cooper VL, Pillatzki A, Gauger P, Schmitt BJ, Koster LG, Killian ML, Yoon KJ (2013) Emergence of Porcine epidemic diarrhea virus in the United States: clinical signs, lesions, and viral genomic sequences. J Vet Diagn Invest 25(5):649–654. doi: 10.1177/1040638713501675 CrossRefPubMedGoogle Scholar
  15. 15.
    Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH, Mazet JK, Hu B, Zhang W, Peng C, Zhang YJ, Luo CM, Tan B, Wang N, Zhu Y, Crameri G, Zhang SY, Wang LF, Daszak P, Shi ZL (2013) Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503(7477):535–538. doi: 10.1038/nature12711 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Yount B, Curtis KM, Fritz EA, Hensley LE, Jahrling PB, Prentice E, Denison MR, Geisbert TW, Baric RS (2003) Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A 100(22):12995–13000. doi: 10.1073/pnas.1735582100 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Frieman M, Yount B, Agnihothram S, Page C, Donaldson E, Roberts A, Vogel L, Woodruff B, Scorpio D, Subbarao K, Baric RS (2012) Molecular determinants of severe acute respiratory syndrome coronavirus pathogenesis and virulence in young and aged mouse models of human disease. J Virol 86(2):884–897. doi: 10.1128/JVI.05957-11 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Roberts A, Deming D, Paddock CD, Cheng A, Yount B, Vogel L, Herman BD, Sheahan T, Heise M, Genrich GL, Zaki SR, Baric R, Subbarao K (2007) A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice. PLoS Pathog 3(1):e5. doi: 10.1371/journal.ppat.0030005 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Almazan F, Gonzalez JM, Penzes Z, Izeta A, Calvo E, Plana-Duran J, Enjuanes L (2000) Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci U S A 97(10):5516–5521CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yount B, Curtis KM, Baric RS (2000) Strategy for systematic assembly of large RNA and DNA genomes: transmissible gastroenteritis virus model. J Virol 74(22):10600–10611CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yount B, Denison MR, Weiss SR, Baric RS (2002) Systematic assembly of a full-length infectious cDNA of mouse hepatitis virus strain A59. J Virol 76(21):11065–11078. doi: 10.1128/jvi.76.21.11065-11078.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Thiel V, Herold J, Schelle B, Siddell SG (2001) Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus. J Gen Virol 82(Pt 6):1273–1281. doi: 10.1099/0022-1317-82-6-1273 CrossRefPubMedGoogle Scholar
  23. 23.
    Almazan F, Sola I, Zuniga S, Marquez-Jurado S, Morales L, Becares M, Enjuanes L (2014) Coronavirus reverse genetic systems: infectious clones and replicons. Virus Res 189:262–270. doi: 10.1016/j.virusres.2014.05.026 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Thiel V, Siddell SG (2005) Reverse genetics of coronaviruses using vaccinia virus vectors. Curr Top Microbiol Immunol 287:199–227PubMedGoogle Scholar
  25. 25.
    Scobey T, Yount BL, Sims AC, Donaldson EF, Agnihothram SS, Menachery VD, Graham RL, Swanstrom J, Bove PF, Kim JD, Grego S, Randell SH, Baric RS (2013) Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus. Proc Natl Acad Sci U S A 110(40):16157–16162. doi: 10.1073/pnas.1311542110 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, Penaranda S, Bankamp B, Maher K, Chen MH, Tong S, Tamin A, Lowe L, Frace M, DeRisi JL, Chen Q, Wang D, Erdman DD, Peret TC, Burns C, Ksiazek TG, Rollin PE, Sanchez A, Liffick S, Holloway B, Limor J, McCaustland K, Olsen-Rasmussen M, Fouchier R, Gunther S, Osterhaus AD, Drosten C, Pallansch MA, Anderson LJ, Bellini WJ (2003) Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science (New York, NY) 300(5624):1394–1399. doi: 10.1126/science.1085952 CrossRefGoogle Scholar
  27. 27.
    Donaldson EF, Yount B, Sims AC, Burkett S, Pickles RJ, Baric RS (2008) Systematic assembly of a full-length infectious clone of human coronavirus NL63. J Virol 82(23):11948–11957. doi: 10.1128/JVI.01804-08 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Becker MM, Graham RL, Donaldson EF, Rockx B, Sims AC, Sheahan T, Pickles RJ, Corti D, Johnston RE, Baric RS, Denison MR (2008) Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice. Proc Natl Acad Sci U S A 105(50):19944–19949. doi: 10.1073/pnas.0808116105 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Menachery VD, Yount BL Jr, Debbink K, Agnihothram S, Gralinski LE, Plante JA, Graham RL, Scobey T, Ge XY, Donaldson EF, Randell SH, Lanzavecchia A, Marasco WA, Shi ZL, Baric RS (2015) A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat Med 21(12):1508–1513. doi: 10.1038/nm.3985 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Menachery VD, Yount BL Jr, Sims AC, Debbink K, Agnihothram SS, Gralinski LE, Graham RL, Scobey T, Plante JA, Royal SR, Swanstrom J, Sheahan TP, Pickles RJ, Corti D, Randell SH, Lanzavecchia A, Marasco WA, Baric RS (2016) SARS-like WIV1-CoV poised for human emergence. Proc Natl Acad Sci U S A 113(11):3048–3053. doi: 10.1073/pnas.1517719113 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Gallichotte EN, Widman DG, Yount BL, Wahala WM, Durbin A, Whitehead S, Sariol CA, Crowe JE Jr, de Silva AM, Baric RS (2015) A new quaternary structure epitope on dengue virus serotype 2 is the target of durable type-specific neutralizing antibodies. MBio 6(5):e01461–e01415. doi: 10.1128/mBio.01461-15 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Messer WB, Yount B, Hacker KE, Donaldson EF, Huynh JP, de Silva AM, Baric RS (2012) Development and characterization of a reverse genetic system for studying dengue virus serotype 3 strain variation and neutralization. PLoS Negl Trop Dis 6(2):e1486. doi: 10.1371/journal.pntd.0001486 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Yount B, Roberts RS, Lindesmith L, Baric RS (2006) Rewiring the severe acute respiratory syndrome coronavirus (SARS-CoV) transcription circuit: engineering a recombination-resistant genome. Proc Natl Acad Sci U S A 103(33):12546–12551. doi: 10.1073/pnas.0605438103 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Curtis KM, Yount B, Baric RS (2002) Heterologous gene expression from transmissible gastroenteritis virus replicon particles. J Virol 76(3):1422–1434. doi: 10.1128/jvi.76.3.1422-1434.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Frieman M, Yount B, Heise M, Kopecky-Bromberg SA, Palese P, Baric RS (2007) Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane. J Virol 81(18):9812–9824. doi: 10.1128/JVI.01012-07 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Yount B, Roberts RS, Sims AC, Deming D, Frieman MB, Sparks J, Denison MR, Davis N, Baric RS (2005) Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice. J Virol 79(23):14909–14922. doi: 10.1128/JVI.79.23.14909-14922.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Frieman MB, Chen J, Morrison TE, Whitmore A, Funkhouser W, Ward JM, Lamirande EW, Roberts A, Heise M, Subbarao K, Baric RS (2010) SARS-CoV pathogenesis is regulated by a STAT1 dependent but a type I, II and III interferon receptor independent mechanism. PLoS Pathog 6(4):e1000849. doi: 10.1371/journal.ppat.1000849 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Sheahan T, Morrison TE, Funkhouser W, Uematsu S, Akira S, Baric RS, Heise MT (2008) MyD88 is required for protection from lethal infection with a mouse-adapted SARS-CoV. PLoS Pathog 4(12):e1000240. doi: 10.1371/journal.ppat.1000240 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Totura AL, Whitmore A, Agnihothram S, Schafer A, Katze MG, Heise MT, Baric RS (2015) Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection. MBio 6(3):e00638–e00615. doi: 10.1128/mBio.00638-15 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Cockrell AS, Peck KM, Yount BL, Agnihothram SS, Scobey T, Curnes NR, Baric RS, Heise MT (2014) Mouse dipeptidyl peptidase 4 is not a functional receptor for Middle East respiratory syndrome coronavirus infection. J Virol 88(9):5195–5199. doi: 10.1128/JVI.03764-13 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Peck KM, Cockrell AS, Yount BL, Scobey T, Baric RS, Heise MT (2015) Glycosylation of mouse DPP4 plays a role in inhibiting Middle East respiratory syndrome coronavirus infection. J Virol 89(8):4696–4699. doi: 10.1128/JVI.03445-14 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Adam S. Cockrell
    • 1
  • Anne Beall
    • 2
  • Boyd Yount
    • 1
  • Ralph Baric
    • 1
    • 2
    Email author
  1. 1.Department of EpidemiologyUniversity of North Carolina-Chapel HillChapel HillUSA
  2. 2.Departments of Microbiology and ImmunologyUniversity of North Carolina-Chapel HillChapel HillUSA

Personalised recommendations