Lassa Virus Reverse Genetics

  • Luis Martínez-SobridoEmail author
  • Slobodan Paessler
  • Juan Carlos de la TorreEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1602)


The Old World (OW) arenavirus Lassa (LASV) is estimated to infect several hundred thousand people yearly in West Africa, resulting in high numbers of Lassa fever (LF), a viral hemorrhagic fever (HF) disease associated with high morbidity and mortality. To date, no licensed vaccines are available to LASV infections, and anti-LASV drug therapy is limited to an off-label use of ribavirin (Rib) that is only partially effective. The development of reverse genetics has provided investigators with a novel and powerful approach for the investigation of the molecular, cell biology, and pathogenesis of LASV. The use of cell-based LASV minigenome (MG) systems has allowed examining the cis- and trans-acting factors involved in genome replication and gene transcription and the identification of novel drugable LASV targets. Likewise, it is now feasible to rescue infectious recombinant (r)LASV entirely from cloned cDNAs containing predetermined mutations in their genomes to investigate virus-host interactions and mechanisms of pathogenesis, as well as to facilitate screens to identify antiviral drugs against LASV and the implementation of novel strategies to develop live-attenuated vaccines (LAV). In this chapter we will summarize the state-of-the-art experimental procedures for implementation of LASV reverse genetics. In addition, we will briefly discuss some significant translational research developments that have been made possible upon the development of LASV reverse genetics.

Key words

Recombinant Lassa virus Lassa virus reverse genetics Lassa virus rescue systems Lassa virus minigenome assays 



LASV research in L. M-S laboratory was funded by the NIH grant 1R21AI119775-01 and by the University of Rochester Drug Discovery Pilot Award Program.


  1. 1.
    Buchmeier MJ, Peter CJ, de la Torre JC (2007) Arenaviridae: the viruses and their replication. Lippincott William and Wilkins, Philadelphia, PAGoogle Scholar
  2. 2.
    Radoshitzky SR et al (2015) Past, present, and future of arenavirus taxonomy (Translated from Eng). Arch Virol 160(7):1851–1874. (in Eng)CrossRefPubMedGoogle Scholar
  3. 3.
    Enria DA, Briggiler AM, Sanchez Z (2008) Treatment of Argentine hemorrhagic fever. Antivir Res 78(1):132–139CrossRefPubMedGoogle Scholar
  4. 4.
    Barton LL, Mets MB, Beauchamp CL (2002) Lymphocytic choriomeningitis virus: emerging fetal teratogen. Am J Obstet Gynecol 187(6):1715–1716CrossRefPubMedGoogle Scholar
  5. 5.
    Fischer SA et al (2006) Transmission of lymphocytic choriomeningitis virus by organ transplantation. N Engl J Med 354(21):2235–2249CrossRefPubMedGoogle Scholar
  6. 6.
    Borio L et al (2002) Hemorrhagic fever viruses as biological weapons: medical and public health management. JAMA 287(18):2391–2405CrossRefPubMedGoogle Scholar
  7. 7.
    Birmingham K, Kenyon G (2001) Lassa fever is unheralded problem in West Africa. Nat Med 7(8):878CrossRefPubMedGoogle Scholar
  8. 8.
    Gunther S, Lenz O (2004) Lassa virus. Crit Rev Clin Lab Sci 41(4):339–390CrossRefPubMedGoogle Scholar
  9. 9.
    Richmond JK, Baglole DJ (2003) Lassa fever: epidemiology, clinical features, and social consequences (Translated from Eng). BMJ 327(7426):1271–1275. (in eng)CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Briese T et al (2009) Genetic detection and characterization of Lujo virus, a new hemorrhagic fever-associated arenavirus from southern Africa (Translated from Eng). PLoS Pathog 5(5):e1000455. (in Eng)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Freedman DO, Woodall J (1999) Emerging infectious diseases and risk to the traveler. Med Clin North Am 83(4):865–883. vPubMedGoogle Scholar
  12. 12.
    Damonte EB, Coto CE (2002) Treatment of arenavirus infections: from basic studies to the challenge of antiviral therapy. Adv Virus Res 58:125–155CrossRefPubMedGoogle Scholar
  13. 13.
    Lee KJ, Novella IS, Teng MN, Oldstone MB, de La Torre JC (2000) NP and L proteins of lymphocytic choriomeningitis virus (LCMV) are sufficient for efficient transcription and replication of LCMV genomic RNA analogs. J Virol 74(8):3470–3477CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Perez M, Craven RC, de la Torre JC (2003) The small RING finger protein Z drives arenavirus budding: implications for antiviral strategies. Proc Natl Acad Sci U S A 100(22):12978–12983CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ortiz-Riano E, Cheng BY, de la Torre JC, Martinez-Sobrido L (2012) Self-association of lymphocytic choriomeningitis virus nucleoprotein is mediated by its N-terminal region and is not required for its anti-interferon function (Translated from Eng). J Virol 86(6):3307–3317. (in Eng)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ortiz-Riano E, Cheng BY, de la Torre JC, Martinez-Sobrido L (2011) The C-terminal region of lymphocytic choriomeningitis virus nucleoprotein contains distinct and segregable functional domains involved in NP-Z interaction and counteraction of the type I interferon response. J Virol 85(24):13038–13048CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Pythoud C et al (2012) Arenavirus nucleoprotein targets interferon regulatory factor-activating kinase IKKepsilon. J Virol 86(15):7728–7738CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Martinez-Sobrido L et al (2009) Identification of amino acid residues critical for the anti-interferon activity of the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis virus. J Virol 83(21):11330–11340CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Martinez-Sobrido L, Giannakas P, Cubitt B, Garcia-Sastre A, de la Torre JC (2007) Differential inhibition of type I interferon induction by arenavirus nucleoproteins. J Virol 81(22):12696–12703CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Martinez-Sobrido L, Zuniga EI, Rosario D, Garcia-Sastre A, de la Torre JC (2006) Inhibition of the type I interferon response by the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis virus. J Virol 80(18):9192–9199CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Borrow P, Martinez-Sobrido L, de la Torre JC (2010) Inhibition of the type I interferon antiviral response during arenavirus infection. Viruses 2(11):2443–2480CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Pythoud C, Rothenberger S, Martinez-Sobrido L, de la Torre JC, Kunz S (2015) Lymphocytic choriomeningitis virus differentially affects the virus-induced type I interferon response and mitochondrial apoptosis mediated by RIG-I/MAVS (Translated from Eng). J Virol 89(12):6240–6250. (in Eng)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Rodrigo WW et al (2012) Arenavirus nucleoproteins prevent activation of nuclear factor kappa B. J Virol 86(15):8185–8197CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kunz S, Borrow P, Oldstone MB (2002) Receptor structure, binding, and cell entry of arenaviruses. Curr Top Microbiol Immunol 262:111–137PubMedGoogle Scholar
  25. 25.
    Radoshitzky SR et al (2007) Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature 446(7131):92–96CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Capul AA et al (2007) Arenavirus Z-glycoprotein association requires Z myristoylation but not functional RING or late domains. J Virol 81(17):9451–9460CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Emonet SE, Urata S, de la Torre JC (2011) Arenavirus reverse genetics: new approaches for the investigation of arenavirus biology and development of antiviral strategies. Virology 411(2):416–425CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ortiz-Riano E, Cheng BY, de la Torre JC, Martinez-Sobrido L (2012) D471G mutation in LCMV-NP affects its ability to self-associate and results in a dominant negative effect in viral RNA synthesis. Viruses 4(10):2137–2161CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ortiz-Riano E, Cheng BY, Carlos de la Torre J, Martinez-Sobrido L (2013) Arenavirus reverse genetics for vaccine development. J Gen Virol 94(Pt 6):1175–1188CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Cheng BY, Ortiz-Riano E, de la Torre JC, & Martinez-Sobrido L (2013) Generation of recombinant arenavirus for vaccine development in FDA-approved Vero cells. J Vis Exp (78)Google Scholar
  31. 31.
    Cheng BY, Ortiz-Riano E, Nogales A, de la Torre JC, Martinez-Sobrido L (2015) Development of live-attenuated arenavirus vaccines based on codon deoptimization. J Virol 89(7):3523–3533CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rodrigo WW, de la Torre JC, Martinez-Sobrido L (2011) Use of single-cycle infectious lymphocytic choriomeningitis virus to study hemorrhagic fever arenaviruses. J Virol 85(4):1684–1695CrossRefPubMedGoogle Scholar
  33. 33.
    Emonet SF, Garidou L, McGavern DB, de la Torre JC (2009) Generation of recombinant lymphocytic choriomeningitis viruses with trisegmented genomes stably expressing two additional genes of interest. Proc Natl Acad Sci U S A 106(9):3473–3478CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Cheng BY, Ortiz-Riano E, de la Torre JC, Martinez-Sobrido L (2015) Arenavirus genome rearrangement for the development of live-attenuated vaccines (Translated from Eng). J Virol 89(14):7373–7384. (in Eng)CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ortiz-Riano E et al (2014) Inhibition of arenavirus by A3, a pyrimidine biosynthesis inhibitor (Translated from Eng). J Virol 88(2):878–889. (in eng)CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Flatz L et al (2010) Development of replication-defective lymphocytic choriomeningitis virus vectors for the induction of potent CD8+ T cell immunity. Nat Med 16(3):339–345CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Yun NE et al (2013) Mice lacking functional STAT1 are highly susceptible to lethal infection with Lassa virus (Translated from Eng). J Virol 87(19):10908–10911. (in Eng)CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Emonet SF et al (2011) Rescue from cloned cDNAs and in vivo characterization of recombinant pathogenic Romero and live-attenuated Candid #1 strains of Junin virus, the causative agent of Argentine hemorrhagic fever disease. J Virol 85(4):1473–1483CrossRefPubMedGoogle Scholar
  39. 39.
    Halfmann P et al (2009) Replication-deficient ebolavirus as a vaccine candidate. J Virol 83(8):3810–3815CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Albarino CG et al (2011) Efficient rescue of recombinant Lassa virus reveals the influence of S segment noncoding regions on virus replication and virulence. J Virol 85(8):4020–4024CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Microbiology and ImmunologyUniversity of RochesterRochesterUSA
  2. 2.University of Texas Medical BranchGalvestonUSA
  3. 3.Department of Immunology and Microbial ScienceThe Scripps Research InstituteLa JollaUSA

Personalised recommendations