Advertisement

Reverse Genetics for Mammalian Orthoreovirus

  • Johnasha D. Stuart
  • Matthew B. Phillips
  • Karl W. BoehmeEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1602)

Abstract

Reverse genetics allows introduction of specific alterations into a viral genome. Studies performed with mutant viruses generated using reverse genetics approaches have contributed immeasurably to our understanding of viral replication and pathogenesis, and also have led to development of novel vaccines and virus-based vectors. Here, we describe the reverse genetics system that allows for production and recovery of mammalian orthoreovirus, a double-stranded (ds) RNA virus, from plasmids that encode the viral genome.

Key words

Plasmid-based reverse genetics Reovirus Double-stranded RNA virus Recombinant virus Viral reassortment T7 RNA polymerase 

Notes

Acknowledgments

We thank Joseph Koon II for careful review of the manuscript.

References

  1. 1.
    Dermody TS, Parker JSL, Sherry B (2013) Orthoreovirus. In: Knipe DM, Howley PM (eds) Fields virology, vol 2. 6th edn. Lippincott, Williams, & Wilkins, Philadelphia, PA, pp 1304–1346Google Scholar
  2. 2.
    Parashar UD, Bresee JS, Gentsch JR, Glass RI (1998) Rotavirus. Emerg Infect Dis 4(4):561–570. doi: 10.3201/eid0404.980406 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Roy P (2013) Orbiviruses. In: Knipe DM, Howley PM (eds) Fields virology, vol 2. 6th edn. Lippincott, Williams, & Wilkins, Philadelphia, PA, pp 1402–1422Google Scholar
  4. 4.
    Sabin AB (1959) Reoviruses. A new group of respiratory and enteric viruses formerly classified as ECHO type 10 is described. Science 130(3386):1387–1389CrossRefPubMedGoogle Scholar
  5. 5.
    Tai JH, Williams JV, Edwards KM, Wright PF, Crowe JE Jr, Dermody TS (2005) Prevalence of reovirus-specific antibodies in young children in Nashville, Tennessee. J Infect Dis 191(8):1221–1224. doi: 10.1086/428911 CrossRefPubMedGoogle Scholar
  6. 6.
    Bellamy AR, Shapiro L, August JT, Joklik WK (1967) Studies on reovirus RNA. I. Characterization of reovirus genome RNA. J Mol Biol 29(1):1–17CrossRefPubMedGoogle Scholar
  7. 7.
    Gomatos PJ, Tamm I (1963) Macromolecular synthesis in reovirus-infected L cells. Biochim Biophys Acta 72:651–653CrossRefPubMedGoogle Scholar
  8. 8.
    Shatkin AJ, Sipe JD, Loh P (1968) Separation of ten reovirus genome segments by polyacrylamide gel electrophoresis. J Virol 2(10):986–991PubMedPubMedCentralGoogle Scholar
  9. 9.
    Banerjee AK, Shatkin AJ (1971) Guanosine-5’-diphosphate at the 5’ termini of reovirus RNA: evidence for a segmented genome within the virion. J Mol Biol 61(3):643–653CrossRefPubMedGoogle Scholar
  10. 10.
    Chow NL, Shatkin AJ (1975) Blocked and unblocked 5’ termini in reovirus genome RNA. J Virol 15(5):1057–1064PubMedPubMedCentralGoogle Scholar
  11. 11.
    Bass DM, Bodkin D, Dambrauskas R, Trier JS, Fields BN, Wolf JL (1990) Intraluminal proteolytic activation plays an important role in replication of type 1 reovirus in the intestines of neonatal mice. J Virol 64(4):1830–1833PubMedPubMedCentralGoogle Scholar
  12. 12.
    Bodkin DK, Nibert ML, Fields BN (1989) Proteolytic digestion of reovirus in the intestinal lumens of neonatal mice. J Virol 63(11):4676–4681PubMedPubMedCentralGoogle Scholar
  13. 13.
    Sturzenbecker LJ, Nibert M, Furlong D, Fields BN (1987) Intracellular digestion of reovirus particles requires a low pH and is an essential step in the viral infectious cycle. J Virol 61(8):2351–2361PubMedPubMedCentralGoogle Scholar
  14. 14.
    Roner MR, Sutphin LA, Joklik WK (1990) Reovirus RNA is infectious. Virology 179(2):845–852CrossRefPubMedGoogle Scholar
  15. 15.
    Kobayashi T, Antar AA, Boehme KW, Danthi P, Eby EA, Guglielmi KM, Holm GH, Johnson EM, Maginnis MS, Naik S, Skelton WB, Wetzel JD, Wilson GJ, Chappell JD, Dermody TS (2007) A plasmid-based reverse genetics system for animal double-stranded RNA viruses. Cell Host Microbe 1(2):147–157. doi: 10.1016/j.chom.2007.03.003 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Milligan JF, Groebe DR, Witherell GW, Uhlenbeck OC (1987) Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res 15(21):8783–8798CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Roner MR, Joklik WK (2001) Reovirus reverse genetics: incorporation of the CAT gene into the reovirus genome. Proc Natl Acad Sci U S A 98(14):8036–8041. doi: 10.1073/pnas.131203198  10.1073/pnas.131203198
  18. 18.
    Ishii K, Ueda Y, Matsuo K, Matsuura Y, Kitamura T, Kato K, Izumi Y, Someya K, Ohsu T, Honda M, Miyamura T (2002) Structural analysis of vaccinia virus DIs strain: application as a new replication-deficient viral vector. Virology 302(2):433–444CrossRefPubMedGoogle Scholar
  19. 19.
    Kobayashi T, Ooms LS, Ikizler M, Chappell JD, Dermody TS (2010) An improved reverse genetics system for mammalian orthoreoviruses. Virology 398(2):194–200. doi: 10.1016/j.virol.2009.11.037 CrossRefPubMedGoogle Scholar
  20. 20.
    Buchholz UJ, Finke S, Conzelmann KK (1999) Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol 73(1):251–259PubMedPubMedCentralGoogle Scholar
  21. 21.
    Boehme KW, Ikizler M, Kobayashi T, Dermody TS (2011) Reverse genetics for mammalian reovirus. Methods 55(2):109–113. doi: 10.1016/j.ymeth.2011.07.002 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Smith RE, Zweerink HJ, Joklik WK (1969) Polypeptide components of virions, top component and cores of reovirus type 3. Virology 39(4):791–810CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Johnasha D. Stuart
    • 1
  • Matthew B. Phillips
    • 1
  • Karl W. Boehme
    • 1
    Email author
  1. 1.Department of Microbiology and ImmunologyUniversity of Arkansas for Medical SciencesLittle RockUSA

Personalised recommendations