Skip to main content

Assessment of Population and ECM Production Using Multiphoton Microscopy as an Indicator of Cell Viability

  • Protocol
  • First Online:
Cell Viability Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1601))

  • 5313 Accesses

Abstract

Multiphoton microscopy allows continuous depth-resolved, nondestructive imaging of scaffold-seeded cells during cell or tissue culture. Spectrally separated images in high resolution can be provided while cells are conserved in their native state. Here we describe the seeding of mesenchymal stem cells to bacterial nanocellulose hydropolymer scaffolds followed by 2-channel imaging of cellular autofluorescence (AF) and collagen-I formation using second harmonic generation (SHG) signals. With this approach the simultaneous observation of the progression of cell morphology and production of extracellular matrix as hallmarks of viability and cell fitness is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gerhardt L-C, Widdows KL, Erol MM et al (2011) The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds. Biomaterials 32:4096–4108. doi:10.1016/j.biomaterials.2011.02.032

    Article  CAS  PubMed  Google Scholar 

  2. Musson DS, Naot D, Chhana A et al (2015) In vitro evaluation of a novel non-mulberry silk scaffold for use in tendon regeneration. Tissue Eng Part A 21:1539–1551. doi:10.1089/ten.tea.2014.0128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ramaswamy Y, Wu C, Van Hummel A et al (2008) The responses of osteoblasts, osteoclasts and endothelial cells to zirconium modified calcium-silicate-based ceramic. Biomaterials 29:4392–4402. doi:10.1016/j.biomaterials.2008.08.006

    Article  CAS  PubMed  Google Scholar 

  4. Papadopoulos N, Dedoussis G, Spanakos G et al (1994) An improved fluorescence assay for the determination of lymphocyte-mediated cytotoxicity using flow cytometry. J Immunol Methods 177:101–111

    Article  CAS  PubMed  Google Scholar 

  5. Yao J, Korotkova T, Smith RL (2011) Viability and proliferation of pluripotential cells delivered to tendon repair sites using bioactive sutures—an in vitro study. J Hand Surg [Am] 36:252–258. doi:10.1016/j.jhsa.2010.10.004

    Article  Google Scholar 

  6. Rice WL, Kaplan DL, Georgakoudi I (2010) Two-photon microscopy for non-invasive, quantitative monitoring of stem cell differentiation. PLoS One 5:e10075. doi:10.1371/journal.pone.0010075

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lee H, Teng S, Chen H et al (2006) Imaging human bone marrow stem cell morphogenesis in polyglycolic acid scaffold by multiphoton microscopy. Tissue Eng 12:2835–2841

    Article  CAS  PubMed  Google Scholar 

  8. Dittmar R, Potier E, Van Zandvoort M et al (2012) Assessment of cell viability in three-dimensional scaffolds using cellular auto-fluorescence. Tissue Eng Part C Methods 18:198–204. doi:10.1089/ten.tec.2011.0334

    Article  CAS  PubMed  Google Scholar 

  9. Chen W-L, Huang C-H, Chiou L-L et al (2010) Multiphoton imaging and quantitative analysis of collagen production by chondrogenic human mesenchymal stem cells cultured in chitosan scaffold. Tissue Eng Part C Methods 16:913–920. doi:10.1089/ten.TEC.2009.0596

    Article  CAS  PubMed  Google Scholar 

  10. Zoumi A, Yeh A, Tromberg BJ (2002) Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc Natl Acad Sci U S A 99:11014–11019. doi:10.1073/pnas.172368799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940. doi:10.1038/nmeth818

    Article  CAS  PubMed  Google Scholar 

  12. Ustione A, Piston DW (2011) A simple introduction to multiphoton microscopy. J Microsc 243:221–226. doi:10.1111/j.1365-2818.2011.03532.x

    Article  CAS  PubMed  Google Scholar 

  13. Zipfel WR, Williams RM, Christie R et al (2003) Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci U S A 100:7075–7080. doi:10.1073/pnas.0832308100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Van der Rest M, Garrone R (1991) Collagen family of proteins. FASEB J 5:2814–2823

    CAS  PubMed  Google Scholar 

  15. Orgel JPRO, Miller A, Irving TC et al (2001) The in situ supermolecular structure of type I collagen. Structure 9:1061–1069

    Article  CAS  PubMed  Google Scholar 

  16. Vielreicher M, Schürmann S, Detsch R et al (2013) Taking a deep look: modern microscopy technologies to optimize the design and functionality of biocompatible scaffolds for tissue engineering in regenerative medicine. J R Soc Interface 10:20130263. doi:10.1098/rsif.2013.0263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vielreicher M, Gellner M, Rottensteiner U et al (2015) Multiphoton microscopy analysis of extracellular collagen I network formation by mesenchymal stem cells. J Tissue Eng Regen Med. doi:10.1002/term.2107

    PubMed  Google Scholar 

  18. Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35:261–270

    Article  CAS  Google Scholar 

  19. Wiegand C, Moritz S, Hessler N et al (2015) Antimicrobial functionalization of bacterial nanocellulose by loading with polihexanide and povidone-iodine. J Mater Sci Mater Med 26:245. doi:10.1007/s10856-015-5571-7

    Article  PubMed  Google Scholar 

  20. Kralisch D, Hessler N, Klemm D et al (2010) White biotechnology for cellulose manufacturing—the HoLiR concept. Biotechnol Bioeng 105:740–747. doi:10.1002/bit.22579

    CAS  PubMed  Google Scholar 

  21. Nadiarnykh O, Lacomb RB, Campagnola PJ et al (2007) Coherent and incoherent SHG in fibrillar cellulose matrices. Opt Express 15:3348–3360

    Article  PubMed  Google Scholar 

  22. Brackmann C, Zaborowska M, Sundberg J et al (2012) In situ imaging of collagen synthesis by osteoprogenitor cells in microporous bacterial cellulose scaffolds. Tissue Eng Part C Methods 18:227–234. doi:10.1089/ten.tec.2011.0211

    Article  CAS  PubMed  Google Scholar 

  23. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi:10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  24. Lee P-F, Yeh AT, Bayless KJ (2009) Nonlinear optical microscopy reveals invading endothelial cells anisotropically alter three-dimensional collagen matrices. Exp Cell Res 315:396–410. doi:10.1016/j.yexcr.2008.10.040

    Article  CAS  PubMed  Google Scholar 

  25. Boerboom RA, Krahn KN, Megens RTA et al (2007) High resolution imaging of collagen organisation and synthesis using a versatile collagen specific probe. J Struct Biol 159:392–399. doi:10.1016/j.jsb.2007.04.008

    Article  CAS  PubMed  Google Scholar 

  26. Rezakhaniha R, Agianniotis A, Schrauwen JTC et al (2011) Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomech Model Mechanobiol 11(3–4):461–473. doi:10.1007/s10237-011-0325-z

    PubMed  Google Scholar 

  27. Sun YEN, Tan H, Lin S et al (2008) Imaging tissue engineering scaffolds using multiphoton microscopy. Microsc Res Tech 71:140–145. doi:10.1002/jemt.20537

    Article  PubMed  Google Scholar 

  28. Rice WL, Firdous S, Gupta S et al (2008) Non-invasive characterization of structure and morphology of silk fibroin biomaterials using non-linear microscopy. Biomaterials 29:2015–2024. doi:10.1016/j.biomaterials.2007.12.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bottan S, Robotti F, Jayathissa P et al (2015) Surface-structured bacterial cellulose with guided assembly-based biolithography (GAB). ACS Nano 9:206–219. doi:10.1021/nn5036125

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Emerging Fields Initiative (EFI) of the University of Erlangen-Nürnberg (project TOPbiomat) and the Erlangen Graduate School in Advanced Optical Technologies (SAOT) within the German Excellence Initiative. We want to thank Dana Kralisch and Nadine Hessler (JeNaCell GmbH) for providing BNC fleeces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Vielreicher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Vielreicher, M., Friedrich, O. (2017). Assessment of Population and ECM Production Using Multiphoton Microscopy as an Indicator of Cell Viability. In: Gilbert, D., Friedrich, O. (eds) Cell Viability Assays. Methods in Molecular Biology, vol 1601. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6960-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6960-9_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6959-3

  • Online ISBN: 978-1-4939-6960-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics