Skip to main content

Analyzing Heterochromatic DNA Double Strand Break (DSB) Repair in Response to Ionizing Radiation

  • Protocol
  • First Online:
ATM Kinase

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1599))

Abstract

DNA damaging agents such as ionizing irradiation induce lesions in the DNA such as double strand breaks (DSBs). Depending on cell type, 10–25% of these DSBs are induced in heterochromatin. Heterochromatic DSBs are resolved with slow kinetics (compared to DSBs in euchromatin) and require ATM activity for repair. Investigating the underlying causes of the slow component of DSB repair and the role of individual response factors in this process provides insight into DSB response pathways and will further the understanding of diseases where such pathways are dysfunctional due to mutation. Here, we describe a method to detect DSB repair foci in the heterochromatin of human cells. We provide a detailed protocol for cell culture preparation, immunofluorescence microscopy, and a computer-assisted approach to analyze overlap between DSB foci and heterochromatin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868

    Article  CAS  PubMed  Google Scholar 

  2. Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ (2001) ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276:42462–42467

    Article  CAS  PubMed  Google Scholar 

  3. Al-Hakim A, Escribano-Diaz C, Landry MC, O'Donnell L, Panier S, Szilard RK, Durocher D (2010) The ubiquitous role of ubiquitin in the DNA damage response. DNA Repair (Amst) 9:1229–1240

    Article  CAS  Google Scholar 

  4. Poulsen M, Lukas C, Lukas J, Bekker-Jensen S, Mailand N (2012) Human RNF169 is a negative regulator of the ubiquitin-dependent response to DNA double-strand breaks. J Cell Biol 197:189–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Danielsen JR, Povlsen LK, Villumsen BH, Streicher W, Nilsson J, Wikstrom M, Bekker-Jensen S, Mailand N (2012) DNA damage-inducible SUMOylation of HERC2 promotes RNF8 binding via a novel SUMO-binding zinc finger. J Cell Biol 197:179–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shiloh Y, Shema E, Moyal L, Oren M (2011) RNF20-RNF40: a ubiquitin-driven link between gene expression and the DNA damage response. FEBS Lett 585:2795–2802

    Article  CAS  PubMed  Google Scholar 

  7. Moyal L, Lerenthal Y, Gana-Weisz M, Mass G, So S, Wang SY, Eppink B, Chung YM, Shalev G, Shema E et al (2011) Requirement of ATM-dependent monoubiquitylation of histone H2B for timely repair of DNA double-strand breaks. Mol Cell 41:529–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goodarzi AA, Jeggo PA (2012) The heterochromatic barrier to DNA double strand break repair: how to get the entry visa. Int J Mol Sci 13:11844–11860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goodarzi AA, Jeggo PA (2013) The repair and signaling responses to dna double-strand breaks. Adv Genet 82:1–45

    CAS  PubMed  Google Scholar 

  10. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Neal JA, Meek K (2011) Choosing the right path: does DNA-PK help make the decision? Mutat Res 711:73–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goodarzi AA, Jeggo P, Lobrich M (2010) The influence of heterochromatin on DNA double strand break repair: getting the strong, silent type to relax. DNA Repair 9:1273–1282

    Article  CAS  PubMed  Google Scholar 

  13. Iliakis GE, Cicilioni O, Metzger L (1991) Measurement of DNA double-strand breaks in CHO cells at various stages of the cell cycle using pulsed field gel electrophoresis: calibration by means of 125I decay. Int J Radiat Biol 59:343–357

    Article  CAS  PubMed  Google Scholar 

  14. Lobrich M, Rydberg B, Cooper PK (1995) Repair of x-ray-induced DNA double-strand breaks in specific Not I restriction fragments in human fibroblasts: joining of correct and incorrect ends. Proc Natl Acad Sci U S A 92:12050–12054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Lobrich M, Jeggo PA (2008) ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol Cell 31:167–177

    Article  CAS  PubMed  Google Scholar 

  16. Beucher A, Birraux J, Tchouandong L, Barton O, Shibata A, Conrad S, Goodarzi AA, Krempler A, Jeggo PA, Lobrich M (2009) ATM and Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2. EMBO J 28:3413–3427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim JA, Kruhlak M, Dotiwala F, Nussenzweig A, Haber JE (2007) Heterochromatin is refractory to gamma-H2AX modification in yeast and mammals. J Cell Biol 178:209–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cowell IG, Sunter NJ, Singh PB, Austin CA, Durkacz BW, Tilby MJ (2007) GammaH2AX foci form preferentially in euchromatin after ionising-radiation. PLoS One 2:e1057

    Article  PubMed  PubMed Central  Google Scholar 

  19. Noon AT, Shibata A, Rief N, Lobrich M, Stewart GS, Jeggo PA, Goodarzi AA (2010) 53BP1-dependent robust localized KAP-1 phosphorylation is essential for heterochromatic DNA double-strand break repair. Nat Cell Biol 12:177–184

    Article  CAS  PubMed  Google Scholar 

  20. Jakob B, Splinter J, Conrad S, Voss KO, Zink D, Durante M, Lobrich M, Taucher-Scholz G (2011) DNA double-strand breaks in heterochromatin elicit fast repair protein recruitment, histone H2AX phosphorylation and relocation to euchromatin. Nucleic Acids Res 39:6489–6499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chiolo I, Minoda A, Colmenares SU, Polyzos A, Costes SV, Karpen GH (2011) Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell 144:732–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Riballo E, Kuhne M, Rief N, Doherty A, Smith GC, Recio MJ, Reis C, Dahm K, Fricke A, Krempler A et al (2004) A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci. Mol Cell 16:715–724

    Article  CAS  PubMed  Google Scholar 

  23. Woodbine L, Brunton H, Goodarzi AA, Shibata A, Jeggo PA (2011) Endogenously induced DNA double strand breaks arise in heterochromatic DNA regions and require ataxia telangiectasia mutated and Artemis for their repair. Nucleic Acids Res 39:6986–6997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ziv Y, Bielopolski D, Galanty Y, Lukas C, Taya Y, Schultz DC, Lukas J, Bekker-Jensen S, Bartek J, Shiloh Y (2006) Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nat Cell Biol 8:870–876

    Article  CAS  PubMed  Google Scholar 

  25. Schultz DC, Friedman JR, Rauscher FJ III (2001) Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-2alpha subunit of NuRD. Genes Dev 15:428–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li X, Lee YK, Jeng JC, Yen Y, Schultz DC, Shih HM, Ann DK (2007) Role for KAP1 serine 824 phosphorylation and sumoylation/desumoylation switch in regulating KAP1-mediated transcriptional repression. J Biol Chem 282:36177–36189

    Article  CAS  PubMed  Google Scholar 

  27. Goodarzi AA, Kurka T, Jeggo PA (2011) KAP-1 phosphorylation regulates CHD3 nucleosome remodeling during the DNA double-strand break response. Nat Struct Mol Biol 18:831–839

    Article  CAS  PubMed  Google Scholar 

  28. Collins N, Poot RA, Kukimoto I, Garcia-Jimenez C, Dellaire G, Varga-Weisz PD (2002) An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nat Genet 32:627–632

    Article  CAS  PubMed  Google Scholar 

  29. Lan L, Ui A, Nakajima S, Hatakeyama K, Hoshi M, Watanabe R, Janicki SM, Ogiwara H, Kohno T, Kanno S et al (2010) The ACF1 complex is required for DNA double-strand break repair in human cells. Mol Cell 40:976–987

    Article  CAS  PubMed  Google Scholar 

  30. Smeenk G, Wiegant WW, Marteijn JA, Luijsterburg MS, Sroczynski N, Costelloe T, Romeijn RJ, Pastink A, Mailand N, Vermeulen W et al (2013) Poly(ADP-ribosyl)ation links the chromatin remodeler SMARCA5/SNF2H to RNF168-dependent DNA damage signaling. J Cell Sci 126:889–903

    Article  CAS  PubMed  Google Scholar 

  31. Klement K, Luijsterburg MS, Pinder JB, Cena CS, Del Nero V, Wintersinger CM, Dellaire G, van Attikum H, Goodarzi AA (2014) Opposing ISWI- and CHD-class chromatin remodeling activities orchestrate heterochromatic DNA repair. J Cell Biol 207:717–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nakamura K, Kato A, Kobayashi J, Yanagihara H, Sakamoto S, Oliveira DV, Shimada M, Tauchi H, Suzuki H, Tashiro S et al (2011) Regulation of homologous recombination by RNF20-dependent H2B ubiquitination. Mol Cell 41:515–528

    Article  CAS  PubMed  Google Scholar 

  33. Kakarougkas A, Ismail A, Klement K, Goodarzi AA, Conrad S, Freire R, Shibata A, Lobrich M, Jeggo PA (2013) Opposing roles for 53BP1 during homologous recombination. Nucleic Acids Res 41:9719–9731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  35. Rasband WS ImageJ. U.S. National Institutes of Health, Bethesda, MD. http://imagej.nih.gov/ij/

  36. Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron A. Goodarzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Klement, K., Goodarzi, A.A. (2017). Analyzing Heterochromatic DNA Double Strand Break (DSB) Repair in Response to Ionizing Radiation. In: Kozlov, S. (eds) ATM Kinase. Methods in Molecular Biology, vol 1599. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6955-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6955-5_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6953-1

  • Online ISBN: 978-1-4939-6955-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics