Skip to main content

Quantitative Phosphoproteomic Analysis of Brain Tissues

  • Protocol
  • First Online:
Book cover Neuroproteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1598))

Abstract

Protein phosphorylation regulates brain development and neuronal activities; and dysregulation of phosphorylation contributes to neurobiological disorders. Phosphoproteomic analysis provides comprehensive modification maps for measuring protein activities in cellular pathways and biological processes. Here, we introduce a mass spectrometry (MS)-based protocol to quantitatively analyze the phosphoproteome of human postmortem brains of Alzheimer’s disease. In this isobaric labeling protocol, up to ten brain samples are selected from control and diseased cases for comparison. Approximately 1 mg proteins per sample are extracted, digested, labeled, and then mixed at an equal ratio. To improve the coverage of phosphoproteome, the peptide mix is further fractionated by offline basic pH reversed-phase liquid chromatography (LC) with high-resolution power. Phosphopeptides in each fraction are then enriched by the titanium dioxide method and analyzed by online acidic pH reverse phase LC-MS/MS, leading to the analysis of tens of thousands of phosphorylation events. This protocol can also be adapted to profile phosphoproteome in other biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hunter T (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80:225–236

    Article  CAS  PubMed  Google Scholar 

  2. Pawson T, Scott JD (2005) Protein phosphorylation in signaling—50 years and counting. Trends Biochem Sci 30:286–290

    Article  CAS  PubMed  Google Scholar 

  3. Ebert DH, Greenberg ME (2013) Activity-dependent neuronal signalling and autism spectrum disorder. Nature 493:327–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cohen S, Gabel HW, Hemberg M, Hutchinson AN, Sadacca LA, Ebert DH, Harmin DA, Greenberg RS, Verdine VK, Zhou Z, Wetsel WC, West AE, Greenberg ME (2011) Genome-wide activity-dependent MeCP2 phosphorylation regulates nervous system development and function. Neuron 72:72–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Su SC, Tsai LH (2011) Cyclin-dependent kinases in brain development and disease. Annu Rev Cell Dev Biol 27:465–491

    Article  CAS  PubMed  Google Scholar 

  6. Jeong H, Cohen DE, Cui L, Supinski A, Savas JN, Mazzulli JR, Yates JR 3rd, Bordone L, Guarente L, Krainc D (2012) Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat Med 18:159–165

    Article  CAS  Google Scholar 

  7. Spillantini MG, Goedert M (2013) Tau pathology and neurodegeneration. Lancet Neurol 12:609–622

    Article  CAS  PubMed  Google Scholar 

  8. Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ, Castellani RJ, Crain BJ, Davies P, Del Tredici K, Duyckaerts C, Frosch MP, Haroutunian V, Hof PR, Hulette CM, Hyman BT, Iwatsubo T, Jellinger KA, Jicha GA, Kovari E, Kukull WA, Leverenz JB, Love S, Mackenzie IR, Mann DM, Masliah E, McKee AC, Montine TJ, Morris JC, Schneider JA, Sonnen JA, Thal DR, Trojanowski JQ, Troncoso JC, Wisniewski T, Woltjer RL, Beach TG (2012) Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol 71:362–381

    Article  PubMed  PubMed Central  Google Scholar 

  10. Olsen JV, Mann M (2013) Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol Cell Proteomics 12:3444–3452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648

    Article  CAS  PubMed  Google Scholar 

  12. Lundby A, Secher A, Lage K, Nordsborg NB, Dmytriyev A, Lundby C, Olsen JV (2012) Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun 3:876

    Article  PubMed  PubMed Central  Google Scholar 

  13. Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, Villen J, Haas W, Sowa ME, Gygi SP (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143:1174–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu R, Haas W, Dephoure N, Huttlin EL, Zhai B, Sowa ME, Gygi SP (2011) A large-scale method to measure absolute protein phosphorylation stoichiometries. Nat Methods 8:677–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM, Shabanowitz J, Hunt DF, White FM (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20:301–305

    Article  CAS  PubMed  Google Scholar 

  16. Nuhse TS, Stensballe A, Jensen ON, Peck SC (2003) Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol Cell Proteomics 2:1234–1243

    Article  PubMed  Google Scholar 

  17. Steen H, Kuster B, Fernandez M, Pandey A, Mann M (2002) Tyrosine phosphorylation mapping of the epidermal growth factor receptor signaling pathway. J Biol Chem 277:1031–1039

    Article  CAS  PubMed  Google Scholar 

  18. Pandey A, Podtelejnikov AV, Blagoev B, Bustelo XR, Mann M, Lodish HF (2000) Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Proc Natl Acad Sci USA 97:179–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD, Comb MJ (2005) Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol 23:94–101

    Article  CAS  PubMed  Google Scholar 

  20. Xia Q, Cheng D, Duong DM, Gearing M, Lah JJ, Levey AI, Peng J (2008) Phosphoproteomic analysis of human brain by calcium phosphate precipitation and mass spectrometry. J Proteome Res 7:2845–2851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou H, Watts JD, Aebersold R (2001) A systematic approach to the analysis of protein phosphorylation. Nat Biotechnol 19:375–378

    Article  CAS  PubMed  Google Scholar 

  22. McLachlin DT, Chait BT (2001) Analysis of phosphorylated proteins and peptides by mass spectrometry. Curr Opin Chem Biol 5:591–602

    Article  CAS  PubMed  Google Scholar 

  23. Tan H, Wu Z, Wang H, Bai B, Li Y, Wang X, Zhai B, Beach TG, Peng J (2015) Refined phosphopeptide enrichment by phosphate additive and the analysis of human brain phosphoproteome. Proteomics 15:500–507

    Article  CAS  PubMed  Google Scholar 

  24. Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villen J, Li J, Cohn MA, Cantley LC, Gygi SP (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci USA 101:12130–12135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McNulty DE, Annan RS (2008) Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol Cell Proteomics 7:971–980

    Article  CAS  PubMed  Google Scholar 

  26. Gilar M, Olivova P, Daly AE, Gebler JC (2005) Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. J Sep Sci 28:1694–1703

    Article  CAS  PubMed  Google Scholar 

  27. Batth TS, Francavilla C, Olsen JV (2014) Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics. J Proteome Res 13:6176–6186

    Article  CAS  PubMed  Google Scholar 

  28. Ting L, Rad R, Gygi SP, Haas W (2011) MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics. Nat Methods 8:937–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Everley RA, Kunz RC, McAllister FE, Gygi SP (2013) Increasing throughput in targeted proteomics assays: 54-plex quantitation in a single mass spectrometry run. Anal Chem 85:5340–5346

    Article  CAS  PubMed  Google Scholar 

  30. Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989

    Article  CAS  PubMed  Google Scholar 

  31. Wang X, Li Y, Wu Z, Wang H, Tan H, Peng J (2014) JUMP: a tag-based database search tool for peptide identification with high sensitivity and accuracy. Mol Cell Proteomics 13:3663–3673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Peng J, Elias JE, Thoreen CC, Licklider LJ, Gygi SP (2003) Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res 2:43–50

    Article  CAS  PubMed  Google Scholar 

  33. Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4:207–214

    Article  CAS  PubMed  Google Scholar 

  34. Jedrychowski MP, Huttlin EL, Haas W, Sowa ME, Rad R, Gygi SP (2011) Evaluation of HCD- and CID-type fragmentation within their respective detection platforms for murine phosphoproteomics. Mol Cell Proteomics 10:M111.009910

    Article  PubMed  PubMed Central  Google Scholar 

  35. Beausoleil SA, Villen J, Gerber SA, Rush J, Gygi SP (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24:1285–1292

    Article  CAS  PubMed  Google Scholar 

  36. Zhou JY, Hanfelt J, Peng J (2007) Clinical proteomics in neurodegenerative diseases. Proteomics Clin Appl 1:1342–1350

    Article  CAS  PubMed  Google Scholar 

  37. Bai B, Hales CM, Chen PC, Gozal Y, Dammer EB, Fritz JJ, Wang X, Xia Q, Duong DM, Street C, Cantero G, Cheng D, Jones DR, Wu Z, Li Y, Diner I, Heilman CJ, Rees HD, Wu H, Lin L, Szulwach KE, Gearing M, Mufson EJ, Bennett DA, Montine TJ, Seyfried NT, Wingo TS, Sun YE, Jin P, Hanfelt J, Willcock DM, Levey A, Lah JJ, Peng J (2013) U1 small nuclear ribonucleoprotein complex and RNA splicing alterations in Alzheimer’s disease. Proc Natl Acad Sci USA 110:16562–16567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu P, Duong DM, Peng J (2009) Systematical optimization of reverse-phase chromatography for shotgun proteomics. J Proteome Res 8:3944–3950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bai B, Chen PC, Hales CM, Wu Z, Pagala V, High AA, Levey AI, Lah JJ, Peng J (2014) Integrated approaches for analyzing U1-70K cleavage in Alzheimer’s disease. J Proteome Res 13:4526–4534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Masuda T, Tomita M, Ishihama Y (2008) Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J Proteome Res 7:731–740

    Article  CAS  PubMed  Google Scholar 

  41. Proc JL, Kuzyk MA, Hardie DB, Yang J, Smith DS, Jackson AM, Parker CE, Borchers CH (2010) A quantitative study of the effects of chaotropic agents, surfactants, and solvents on the digestion efficiency of human plasma proteins by trypsin. J Proteome Res 9:5422–5437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Leon IR, Schwammle V, Jensen ON, Sprenger RR (2013) Quantitative assessment of in-solution digestion efficiency identifies optimal protocols for unbiased protein analysis. Mol Cell Proteomics 12:2992–3005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tan H, Wu Z, Wang H, Bai B, Li Y, Wang X, Zhai B, Beach TG, Peng J (2014) Refined phosphopeptide enrichment by phosphate additive and the analysis of human brain phosphoproteome. Proteomics 15:500–507

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Institutes of Health (R01GM114260, R01AG047928, and R01AG053987), the American Cancer Society (RSG-09-181), and ALSAC (American Lebanese Syrian Associated Charities).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junmin Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Bai, B., Tan, H., Peng, J. (2017). Quantitative Phosphoproteomic Analysis of Brain Tissues. In: Kobeissy, F., Stevens, Jr., S. (eds) Neuroproteomics. Methods in Molecular Biology, vol 1598. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6952-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6952-4_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6950-0

  • Online ISBN: 978-1-4939-6952-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics