Generation of Functional Thyroid Tissue Using 3D-Based Culture of Embryonic Stem Cells

  • Francesco Antonica
  • Dominika Figini Kasprzyk
  • Andrea Alex Schiavo
  • Mírian Romitti
  • Sabine Costagliola
Part of the Methods in Molecular Biology book series (MIMB, volume 1597)


During the last decade three-dimensional (3D) cultures of pluripotent stem cells have been intensively used to understand morphogenesis and molecular signaling important for the embryonic development of many tissues. In addition, pluripotent stem cells have been shown to be a valid tool for the in vitro modeling of several congenital or chronic human diseases, opening new possibilities to study their physiopathology without using animal models. Even more interestingly, 3D culture has proved to be a powerful and versatile tool to successfully generate functional tissues ex vivo. Using similar approaches, we here describe a protocol for the generation of functional thyroid tissue using mouse embryonic stem cells and give all the details and references for its characterization and analysis both in vitro and in vivo. This model is a valid approach to study the expression and the function of genes involved in the correct morphogenesis of thyroid gland, to elucidate the mechanisms of production and secretion of thyroid hormones and to test anti-thyroid drugs.

Key words

Thyroid development Embryonic stem cells Regenerative medicine Hypothyroidism 


  1. 1.
    Eiraku M, Takata N, Ishibashi H et al (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–56CrossRefPubMedGoogle Scholar
  2. 2.
    Suga H, Kadoshima T, Minaguchi M et al (2011) Self-formation of functional adenohypophysis in three-dimensional culture. Nature 480:57–62CrossRefPubMedGoogle Scholar
  3. 3.
    Nakano T, Ando S, Takata N et al (2012) Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10:771–785CrossRefPubMedGoogle Scholar
  4. 4.
    Antonica F, Kasprzyk DF, Opitz R et al (2012) Generation of functional thyroid from embryonic stem cells. Nature 491:66–71CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Arufe MC, Lu M, Kubo A et al (2006) Directed differentiation of mouse embryonic stem cells into thyroid follicular cells. Endocrinology 147:3007–3015CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Longmire TA, Ikonomou L, Hawkins F et al (2012) Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell Stem Cell 10:398–411CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kyba M, Perlingeiro RC, Daley GQ (2002) HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 109:29–37CrossRefPubMedGoogle Scholar
  8. 8.
    Ahfeldt T, Schinzel RT, Lee YK et al (2012) Programming human pluripotent stem cells into white and brown adipocytes. Nat Cell Biol 14:209–219CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kubo A, Stull R, Takeuchi M et al (2011) Pdx1 and Ngn3 overexpression enhances pancreatic differentiation of mouse ES cell-derived endoderm population. PLoS One 6:e24058CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kimura S, Hara Y, Pineau T et al (1996) The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 10:60–69CrossRefPubMedGoogle Scholar
  11. 11.
    Plachov D, Chowdhury K, Walther C et al (1990) Pax8, a murine paired box gene expressed in the developing excretory system and thyroid gland. Development 110:643–651PubMedGoogle Scholar
  12. 12.
    De Felice M, Di Lauro R (2004) Thyroid development and its disorders: genetics and molecular mechanisms. Endocr Rev 25:722–746CrossRefPubMedGoogle Scholar
  13. 13.
    De Felice M, Di Lauro R (2011) Minireview: intrinsic and extrinsic factors in thyroid gland development: an update. Endocrinology 152:2948–2956CrossRefPubMedGoogle Scholar
  14. 14.
    Kurmann AA, Serra M, Hawkins F et al (2015) Regeneration of thyroid function by transplantation of differentiated pluripotent stem cells. Cell Stem Cell 17:527–542CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Iacovino M, Bosnakovski D, Fey H et al (2011) Inducible cassette exchange: a rapid and efficient system enabling conditional gene expression in embryonic stem and primary cells. Stem Cells 29:1580–1588CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hsiao EC, Nguyen TD, Ng JK et al (2011) Constitutive Gs activation using a single-construct tetracycline-inducible expression system in embryonic stem cells and mice. Stem Cell Res Ther 2:11CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Francesco Antonica
    • 1
    • 2
  • Dominika Figini Kasprzyk
    • 1
  • Andrea Alex Schiavo
    • 1
  • Mírian Romitti
    • 1
  • Sabine Costagliola
    • 1
  1. 1.Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM)Université Libre de BruxellesBrusselsBelgium
  2. 2.Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK

Personalised recommendations